Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivonne Nijenhuis is active.

Publication


Featured researches published by Ivonne Nijenhuis.


Applied and Environmental Microbiology | 2005

Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin.

Ivonne Nijenhuis; Janet Andert; Kirsten Beck; Matthias Kästner; Gabriele Diekert; Hans-Hermann Richnow

ABSTRACT Carbon stable isotope fractionation of tetrachloroethene (PCE) during reductive dechlorination by whole cells and crude extracts of Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and the abiotic reaction with cyanocobalamin (vitamin B12) was studied. Fractionation was largest during the reaction with cyanocobalamin with αC = 1.0132. Stable isotope fractionation was lower but still in a similar order of magnitude for Desulfitobacterium sp. PCE-S (αC = 1.0052 to 1.0098). The isotope fractionation of PCE during dehalogenation by S. multivorans was lower by 1 order of magnitude (αC = 1.00042 to 1.0017). Additionally, an increase in isotope fractionation was observed with a decrease in cell integrity for both strains. For Desulfitobacterium sp. strain PCE-S, the carbon stable isotope fractionation factors were 1.0052 and 1.0089 for growing cells and crude extracts, respectively. For S. multivorans, αC values were 1.00042, 1.00097, and 1.0017 for growing cells, crude extracts, and the purified PCE reductive dehalogenase, respectively. For the field application of stable isotope fractionation, care is needed as fractionation may vary by more than an order of magnitude depending on the bacteria present, responsible for degradation.


Fems Microbiology Letters | 2013

Genome sequences of two dehalogenation specialists – Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region

Marlén Pöritz; Tobias Goris; Tesfaye Wubet; Mika T. Tarkka; François Buscot; Ivonne Nijenhuis; Ute Lechner; Lorenz Adrian

The genomes of two novel Dehalococcoides mccartyi strains, DCMB5 and BTF08, enriched from the heavily organohalide-contaminated megasite around Bitterfeld (Germany), were fully sequenced and annotated. Although overal lsimilar, the genome sequences of the two strains reveal remarkable differences in their genetic content, reflecting a specific adaptation to the contaminants at the field sites from which they were enriched. The genome of strain BTF08 encodes for 20 reductive dehalogenases, and is the first example of a genome containing all three enzymes that are necessary to couple the complete reductive dechlorination of PCE to ethene to growth. The genes encoding trichloroethene and vinyl chloride reductive dehalogenases, tceA and vcrA, are located within mobile genetic elements, suggesting their recent horizontal acquisition.The genome of strain DCMB5 contains 23 reductive dehalogenase genes,including cbrA, which encodes a chlorobenzene reductive dehalogenase, and a gene cluster encoding arsenic resistance proteins, both corresponding to typical pollutants at its isolation site.


Environmental Science & Technology | 2011

Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1.

Ernest Marco-Urrea; Ivonne Nijenhuis; Lorenz Adrian

Dehalococcoides sp. strain CBDB1 reductively dechlorinated perchloroethene (PCE) and trichloroethene (TCE) to predominantly trans-1,2-dichloroethene (trans-DCE). Cell counting by direct microscopy showed that strain CBDB1 used PCE and TCE as electron acceptors for respiratory growth obtaining a growth yield of 3.9 × 10(12) cells per mol of chloride released in both cases. PCE and TCE were dechlorinated to trans- and cis-DCE at an average constant ratio of 3.4 (±0.2):1, which is consistent with the ratios found in several trans-DCE-producing sediments and soils containing uncultured Dehalococcoides-like species. Significant carbon isotope fractionation was observed during PCE and TCE reductive dehalogenation. The enrichment factor of TCE (εC = -11.2) was within the range of previously reported values for TCE dechlorination by other Dehalococcoides species although the tceA gene responsible for ethene generation in the latter cultures was absent in strain CBDB1. On the contrary, the enrichment factor of PCE (εC = -1.6) was 3.8-times lower than that obtained for Dehalococcoides sp. strain 195 although both strains shared a high similarity in the pceA gene responsible for PCE dechlorination in strain 195. In addition, the product-related enrichment factors for TCE dehalogenation were calculated based on product isotope signature of the two accumulated products cis-DCE (εC TCE→cis-DCE = -11.0) and trans-DCE (εC TCE→trans-DCE = -15.9). These results are of particular interest since strain CBDB1 constitutes, together with the recent isolated strain MB, the unique Dehalococcoides species unable to dechlorinate PCE and TCE beyond DCE.


Environmental Toxicology and Chemistry | 2005

Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation

Arno Kaschl; Carsten Vogt; Sylvia Uhlig; Ivonne Nijenhuis; Holger Weiss; Matthias Kästner; Hans H. Richnow

The concentration and isotopic composition of monochlorobenzene (MCB) was monitored in the plume of an anaerobic, contaminated aquifer in Bitterfeld, Germany. An enrichment in the carbon isotopic composition of more than 4 delta units was found at the fringes of the plume relative to the center (-26.5 %), suggesting the occurrence of in situ biodegradation of MCB. A similar enrichment was measured in a detailed cross-section of the plume and in depth-specific samples obtained in a multilevel sampling well. The latter samples gave a good correlation of MCB concentrations and respective isotopic composition according to the Rayleigh equation. On the other hand, batch experiments using the aerobic MCB-degrading strains Ralstonia sp. DSM 8910, Acidovorax facilis UFZ B517, Rhodococcus erythropolis UFZ B528, and Pseudomonas veronii UFZ B547 showed that the known aerobic pathway initiated by dioxygenases does not result in a significant isotopic fractionation. Thus, a novel anaerobic pathway resulting in an isotopic fractionation appears to be the predominant process of MCB degradation in this aquifer. The study also clearly demonstrates the usefulness of isotopic fractionation analysis to prove biodegradation directly in the field, even when microcosm studies are not available and a metabolic pathway has not yet been elucidated.


Environmental Science & Technology | 2014

Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene.

Julian Renpenning; Sebastian Keller; Stefan Cretnik; Orfan Shouakar-Stash; Martin Elsner; Torsten Schubert; Ivonne Nijenhuis

The role of the corrinoid cofactor in reductive dehalogenation catalysis by tetrachloroethene reductive dehalogenase (PceA) of Sulfurospirillum multivorans was investigated using isotope analysis of carbon and chlorine. Crude extracts containing PceA--harboring either a native norpseudo-B12 or the alternative nor-B12 cofactor--were applied for dehalogenation of tetrachloroethene (PCE) or trichloroethene (TCE), and compared to abiotic dehalogenation with the respective purified corrinoids (norpseudovitamin B12 and norvitamin B12), as well as several commercially available cobalamins and cobinamide. Dehalogenation of TCE resulted in a similar extent of C and Cl isotope fractionation, and in similar dual-element isotope slopes (εC/εCl) of 5.0-5.3 for PceA enzyme and 3.7-4.5 for the corrinoids. Both observations support an identical reaction mechanism. For PCE, in contrast, observed C and Cl isotope fractionation was smaller in enzymatic dehalogenation, and dual-element isotope slopes (2.2-2.8) were distinctly different compared to dehalogenation mediated by corrinoids (4.6-7.0). Remarkably, εC/εCl of PCE depended in addition on the corrinoid type: εC/εCl values of 4.6 and 5.0 for vitamin B12 and norvitamin B12 were significantly different compared to values of 6.9 and 7.0 for norpseudovitamin B12 and dicyanocobinamide. Our results therefore suggest mechanistic and/or kinetic differences in catalytic PCE dehalogenation by enzymes and different corrinoids, whereas such differences were not observed for TCE.


Environmental Science & Technology | 2013

Enantioselective Carbon Stable Isotope Fractionation of Hexachlorocyclohexane during Aerobic Biodegradation by Sphingobium spp.

Safdar Bashir; Anko Fischer; Ivonne Nijenhuis; Hans-Hermann Richnow

Carbon isotope fractionation was investigated for the biotransformation of γ- and α- hexachlorocyclohexane (HCH) as well as enantiomers of α-HCH using two aerobic bacterial strains: Sphingobium indicum strain B90A and Sphingobium japonicum strain UT26. Carbon isotope enrichment factors (ε(c)) for γ-HCH (ε(c) = -1.5 ± 0.1 ‰ and -1.7 ± 0.2 ‰) and α-HCH (ε(c) = -1.0 ± 0.2 ‰ and -1.6 ± 0.3 ‰) were similar for both aerobic strains, but lower in comparison with previously reported values for anaerobic γ- and α-HCH degradation. Isotope fractionation of α-HCH enantiomers was higher for (+) α-HCH (ε(c) = -2.4 ± 0.8 ‰ and -3.3 ± 0.8 ‰) in comparison to (-) α-HCH (ε(c) = -0.7 ± 0.2 ‰ and -1.0 ± 0.6 ‰). The microbial fractionation between the α-HCH enantiomers was quantified by the Rayleigh equation and enantiomeric fractionation factors (ε(e)) for S. indicum strain B90A and S. japonicum strain UT26 were -42 ± 16% and -22 ± 6%, respectively. The extent and range of isomer and enantiomeric carbon isotope fractionation of HCHs with Sphingobium spp. suggests that aerobic biodegradation of HCHs can be monitored in situ by compound-specific stable isotope analysis (CSIA) and enantiomer-specific isotope analysis (ESIA). In addition, enantiomeric fractionation has the potential as a complementary approach to CSIA and ESIA for assessing the biodegradation of α-HCH at contaminated field sites.


FEMS Microbiology Ecology | 2010

Tetrachloroethene conversion to ethene by a Dehalococcoides‐containing enrichment culture from Bitterfeld

Danuta Cichocka; Marcell Nikolausz; Pieter Jan Haest; Ivonne Nijenhuis

A Dehalococcoides-dominated culture coupling reductive dechlorination of tetrachloroethene (PCE) to ethene to growth was enriched from a European field site for the first time. Microcosms were set up using groundwater from a chlorinated ethene-contaminated anaerobic aquifer in Bitterfeld (Germany). Active, lactate-amended microcosms capable of PCE dechlorination to ethene without the accumulation of intermediates were used for further enrichment. After three transfers on lactate as an electron donor and PCE as an electron acceptor, the enrichment was transferred to parallel cultures with one of the chlorinated ethenes as an electron acceptor and acetate and hydrogen as the carbon and energy source, respectively. After three more transfers, a highly purified culture was derived that was capable of dechlorinating PCE with hydrogen and acetate as the electron donor and carbon source, respectively. PCR, followed by denaturing gradient gel electrophoresis, cloning and sequencing revealed that this culture was dominated by a Dehalococcoides sp. belonging to the Pinellas group. Investigation of substrate specificity in the parallel cultures suggested the presence of a novel Dehalococcoides that can couple all dechlorination steps, from PCE to ethene, to energy conservation. Quantitative real-time PCR confirmed growth with PCE, cis-dichloroethene, 1,1-dichloroethene or vinyl chloride as electron acceptors. The culture was designated BTF08 due to its origin in Bitterfeld.


FEMS Microbiology Ecology | 2010

Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater

Gwenaël Imfeld; Cristian Estop Aragonés; Ingo Fetzer; Éva Mészáros; Simone Zeiger; Ivonne Nijenhuis; Marcell Nikolausz; Sylvain Delerce; Hans H. Richnow

The dynamics and composition of microbial communities in the aqueous phase of a model wetland supplied with cis- and trans-1,2-dichloroethenes (DCE)-contaminated groundwater was characterized. PCR-denaturing gradient gel electrophoresis analysis of water samples obtained from different parts of the wetland revealed that changes of the bacterial community structure coincided with a succession of the hydrochemical conditions in the wetland, from oxic towards anoxic conditions. During this transition phase, the appearance of vinyl chloride and ethene correlated with the presence of putative dechlorinating bacteria (Dehalococcoides spp., Geobacter spp. and Dehalobacter spp.). Additionally, a shift of the DCE isotopic composition indicated the progressive prevalence of reductive dechlorination in the wetland. Although the DCE degradation processes varied over time, biodegradation activity was maintained in the wetland system. 16S rRNA gene libraries revealed that Proteobacteria accounted for >50% of 16S rRNA genes clone libraries, whereas approximately 17% of the sequences from the wetland were related to sulphate reducers. Based on a multiple-method approach, this study illustrates the linkage between microbial community dynamics and composition, changes of hydrochemical conditions and processes of DCE degradation in a wetland system.


Applied Microbiology and Biotechnology | 2007

Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria

Ilka Duldhardt; Ivonne Nijenhuis; Frieder Schauer; Hermann J. Heipieper

The effect of seven important pollutants and three representative organic solvents on growth of Thauera aromatica K172, as reference strain for nitrate-reducing anaerobic bacteria, was investigated. Toxicity in form of the effective concentrations (EC50) that led to 50% growth inhibition of potential organic pollutants such as BTEX (benzene, toluene, ethylbenzene, and xylene), chlorinated phenols and aliphatic alcohols on cells was tested under various anaerobic conditions. Similar results were obtained for Geobacter sulfurreducens and Desulfococcus multivorans as representative for Fe3+-reducing and sulphate-reducing bacteria, respectively, leading to a conclusion that anaerobic bacteria are far more sensitive to organic pollutants than aerobic ones. Like for previous studies for aerobic bacteria, yeast and animal cell cultures, a correlation between toxicity and hydrophobicity (log P values) of organic compounds for different anaerobic bacteria was ascertained. However, compared to aerobic bacteria, all three tested anaerobic bacteria were shown to be about three times more sensitive to the tested substances.


Environmental Pollution | 2009

Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers

Nicole Stelzer; Gwenaël Imfeld; Martin Thullner; Jürgen Lehmann; Alexander Poser; Hans-H. Richnow; Ivonne Nijenhuis

Biodegradation of chlorobenzenes was assessed at an anoxic aquifer by combining hydrogeochemistry and stable isotope analyses. In situ microcosm analysis evidenced microbial assimilation of chlorobenzene (MCB) derived carbon and laboratory investigations asserted mineralization of MCB at low rates. Sequential dehalogenation of chlorinated benzenes may affect the isotope signature of single chlorobenzene species due to simultaneous depletion and enrichment of (13)C, which complicates the evaluation of degradation. Therefore, the compound-specific isotope analysis was interpreted based on an isotope balance. The enrichment of the cumulative isotope composition of all chlorobenzenes indicated in situ biodegradation. Additionally, the relationship between hydrogeochemistry and degradation activity was investigated by principal component analysis underlining variable hydrogeochemical conditions associated with degradation activity at the plume scale. Although the complexity of the field site did not allow straightforward assessment of natural attenuation processes, the application of an integrative approach appeared relevant to characterize the in situ biodegradation potential.

Collaboration


Dive into the Ivonne Nijenhuis's collaboration.

Top Co-Authors

Avatar

Hans H. Richnow

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Hans-Hermann Richnow

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Marcell Nikolausz

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann J. Heipieper

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Julian Renpenning

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Kevin Kuntze

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Nicole Stelzer

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Uwe Kappelmeyer

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge