Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grzegorz Mikułowski is active.

Publication


Featured researches published by Grzegorz Mikułowski.


Smart Materials and Structures | 2007

Adaptive landing gear concept?feedback control validation

Grzegorz Mikułowski; Jan Holnicki-Szulc

The objective of this paper is to present an integrated feedback control concept for adaptive landing gears (ALG) and its experimental validation. Aeroplanes are subjected to high dynamic loads as a result of the impact during each landing. Classical landing gears, which are in common use, are designed in accordance with official regulations in a way that ensures the optimal energy dissipation for the critical (maximum) sink speed. The regulations were formulated in order to ensure the functional capability of the landing gears during an emergency landing. However, the landing gears, whose characteristics are optimized for these critical conditions, do not perform well under normal impact conditions. For that situation it is reasonable to introduce a system that would adapt the characteristics of the landing gears according to the sink speed of landing. The considered system assumes adaptation of the damping force generated by the landing gear, which would perform optimally in an emergency situation and would adapt itself for regular landings as well. This research covers the formulation and design of the control algorithms for an adaptive landing gear based on MR fluid, implementation of the algorithms on an FPGA platform and experimental verification on a lab-scale landing gear device. The main challenge of the research was to develop a control methodology that could operate effectively within 50 ms, which is assumed to be the total duration of the phenomenon. The control algorithm proposed in this research was able to control the energy dissipation process on the experimental stand.


PLOS ONE | 2014

Is the Poly (L- Lactide- Co– Caprolactone) Nanofibrous Membrane Suitable for Urinary Bladder Regeneration?

Marta Pokrywczyńska; Arkadiusz Jundziłł; Jan Adamowicz; Tomasz Kowalczyk; Karolina Warda; Marta Rasmus; Lukasz Buchholz; Sandra Krzyzanowska; Paweł Nakielski; Tomasz Chmielewski; Magdalena Bodnar; Andrzej Marszałek; Robert Dębski; Małgorzata Frontczak-Baniewicz; Grzegorz Mikułowski; Maciej Nowacki; Tomasz Kowalewski; Tomasz Drewa

The purpose of this study was to compare: a new five-layered poly (L–lactide–co–caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L–lactide–co–caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×106 cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×106ADSCs; (II) SIS+ 3×106ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Massons trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L–lactide–co–caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold.


Solid State Phenomena | 2009

Smart Technologies for Adaptive Impact Absorption

Jan Holnicki-Szulc; Cezary Graczykowski; Grzegorz Mikułowski; Arkadiusz Mróz; P. Pawłowski

The article presents a review of recent research carried out in the Department of Intelligent Technologies of Institute of Fundamental Technological Research, dedicated to application of systems for adaptive impact absorption to adaptive aircraft landing gears, novel concept of protective MFM structures, flow-control based airbags, maritime applications of inflatable structures, and development of adaptive wind turbine blade – hub connections.


Shock and Vibration | 2009

Adaptive landing gear: Optimum control strategy and potential for improvement

Grzegorz Mikułowski; Łukasz Jankowski

An adaptive landing gear is a landing gear (LG) capable of active adaptation to particular landing conditions by means of controlled hydraulic force. The objective of the adaptive control is to mitigate the peak force transferred to the aircraft structure during touch-down, and thus to limit the structural fatigue factor. This paper investigates the ultimate limits for improvement due to various strategies of active control. Five strategies are proposed and investigated numerically using a validated model of a real, passive landing gear as a reference. Potential for improvement is estimated statistically in terms of the mean and median (significant) peak strut forces as well as in terms of the extended safe sinking velocity range. Three control strategies are verified experimentally using a laboratory test stand.


Smart Materials and Structures | 2013

Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber

Grzegorz Mikułowski; Rafał Wiszowaty; Jan Holnicki-Szulc

This paper describes a pneumatic valve based on a multilayer piezoelectric actuator and H?rbiger plates. The device was designed to operate in an adaptive pneumatic shock absorber. The adaptive pneumatic shock absorber was considered as a piston?cylinder device and the valve was intended to be installed inside the piston. The main objective for the valve application was regulating the gas flow between the cylinder?s chambers in order to maintain the desired value of the reaction force generated by the shock absorber. The paper describes the design constraints and requirements, together with results of analytical modelling of fluid flow verified versus experimentally obtained data. The presented results indicate that the desired performance characteristics of the valve were obtained. The geometrical constraints of the flow ducts were studied and the actuator?s functional features analysed.


Biofabrication | 2015

Biocompatibility of electrospun human albumin: a pilot study

B H Noszczyk; Tomasz Kowalczyk; M Łyżniak; Krzysztof Zembrzycki; Grzegorz Mikułowski; J Wysocki; J Kawiak; Z Pojda

Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.


Mathematical Problems in Engineering | 2016

Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

Grzegorz Mikułowski; Rafał Wiszowaty

Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA), which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.


International Journal of Protective Structures | 2015

Adaptive Impact Absorption – The Concept and Potential Applications:

Jan Holnicki-Szulc; Cezary Graczykowski; Grzegorz Mikułowski; Arkadiusz Mróz; P. Pawłowski; Rafał Wiszowaty

Adaptive Impact Absorption focuses on adaptation of energy absorbing structures to actual dynamic loading by using system of sensors detecting and identifying impact in advance and embedded semi-active dissipaters with controllable mechanical properties. Application of such devices allows to modify dynamic characteristics of the structure during the period of impact and to precisely control the process of energy dissipation. The paper presents an overview of research conducted at the Department of Intelligent Technologies of the Institute of Fundamental Technological Research dedicated to design and applications of various systems of Adaptive Impact Absorption. Wide range of presented examples covers adaptive hydraulic and pneumatic landing gears, skeletal systems equipped with controllable elements and detachable joints as well as adaptive inflatable structures.


Medical Science Monitor | 2017

Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering

Arkadiusz Jundziłł; Marta Pokrywczyńska; Jan Adamowicz; Tomasz Kowalczyk; Maciej Nowacki; Magdalena Bodnar; Andrzej Marszałek; Małgorzata Frontczak-Baniewicz; Grzegorz Mikułowski; Tomasz Kloskowski; James Gatherwright; Tomasz Drewa

Background Electrospun nanofibers have widespread putative applications in the field of regenerative medicine and tissue engineering. When compared to naturally occurring collagen matrices, electrospun nanofiber scaffolds have two distinct advantages: they do not induce a foreign body reaction and they are not at risk for biological contamination. However, the exact substrate, structure, and production methods have yet to be defined. Material/Methods In the current study, tubular-shaped poly(L-lactide-co-caprolactone) (PLCL) constructs produced using electrospinning technology were evaluated for their potential application in the field of tissue regeneration in two separate anatomic locations: the skin and the abdomen. The constructs were designed to have an internal diameter of 3 mm and thickness of 200 μm. Using a rodent model, 20 PLCL tubular constructs were surgically implanted in the abdominal cavity and subcutaneously. The constructs were then evaluated histologically using electron microscopy at 6 weeks post-implantation. Results Histological evaluation and analysis using scanning electron microscopy showed that pure scaffolds by themselves were able to induce angiogenesis after implantation in the rat model. Vascularization was observed in both tested groups; however, better results were obtained after intraperitoneal implantation. Formation of more and larger vessels that migrated inside the scaffold was observed after implantation into the peritoneum. In this group no evidence of inflammation and better integration of scaffold with host tissue were noticed. Subcutaneous implantation resulted in more fibrotic reaction, and differences in cell morphology were also observed between the two tested groups. Conclusions This study provides a standardized evaluation of a PLCL conduit structure in two different anatomic locations, demonstrating the excellent ability of the structure to achieve vascularization. Functional, histological, and mechanical data clearly indicate prospective clinical utilization of PLCL in critical size defect regeneration.


Advances in Science and Technology | 2016

Adaptive Self-Protection against Shock and Vibration

Łukasz Jankowski; Cezary Graczykowski; P. Pawłowski; Grzegorz Mikułowski; Marian Ostrowski; Blazej Poplawski; Rami Faraj; Grzegorz Suwała; Jan Holnicki-Szulc

This contribution reviews the challenges in adaptive self-protection of structures. A proper semi-active control strategy can significantly increase structural ability to absorb impact-type loads and damp the resulting vibrations. Discussed systems constitute a new class of smart structures capable of a real-time identification of loads and vibration patterns, followed by a low-cost optimum absorption of the energy by structural adaptation. Given the always surging quest for safety, such systems have a great potential for practical applications (in landing gears, road barriers, space structures, etc.). Compared to passive systems, their better performance can be attributed to the paradigm of self-adaptivity, which is ubiquitous in nature, but still sparsely applied in structural engineering. Being in the early stages of development, their ultimate success depends on a concerted effort in facing a number of challenges. This contribution discusses some of the important problems, including these of a conceptual, technological, methodological and software engineering nature.

Collaboration


Dive into the Grzegorz Mikułowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arkadiusz Mróz

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Łukasz Jankowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Blazej Poplawski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Pawłowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rafał Wiszowaty

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Kowalczyk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrzej Marszałek

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Arkadiusz Jundziłł

Nicolaus Copernicus University in Toruń

View shared research outputs
Researchain Logo
Decentralizing Knowledge