Guan Jiang
Xuzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guan Jiang.
Cancer Letters | 2012
Hui Tian; Baofu Zhang; Jie-Hui Di; Guan Jiang; Feifei Chen; Huizhong Li; Liantao Li; Dong-Sheng Pei; Junnian Zheng
Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of Reactive Oxygen Species (ROS) and cells own antioxidant defenses. As a oxidative stress sensor, Keap1 functions as both an adaptor for Cul3⋅Rbx1 E3 ligase complex mediated degradation of the transcription factor Nrf2, and a master regulator of cytoprotective gene expression. Although Nrf2 is a well known substrate for Keap1, the DGR domain of Keap1 has been reported also to bind other proteins directly or indirectly. IKKβ as positive regulator of NF-κB is also destabilized by Keap1, which resulted in inhibiting NF-κB-derived tumor promotion. In addition, anti-apoptotic Bcl-2/Bcl-xL protein was identified as another substrate for the Keap1-Cul3-E3 ligase complex. Keap1 led to the repression and destabilization of Bcl-2, decreased Bcl-2:Bax heterodimers and facilitated cancer cells apoptosis. Given that Keap1 might function as a tumor suppressor protein to mitigate tumor progression, the different kinds of Keap1 somatic mutations were detected in numerous cancer cells. Therefore, it is important to understand the Keap1-involved signaling cascades. This review primarily focuses on the prevention of tumorigenesis role of Keap1 through negative regulation of three substrates Nrf2, IKKβ and Bcl-2/Bcl-xL, with emphasis on the recent findings indicating the cancer guarder function of Keap1.
Molecular Medicine Reports | 2015
Lian Tao Li; Guan Jiang; Qian Chen; Junnian Zheng
The expression of Ki67 is strongly associated with tumor cell proliferation and growth, and is widely used in routine pathological investigation as a proliferation marker. The nuclear protein Ki67 (pKi67) is an established prognostic and predictive indicator for the assessment of biopsies from patients with cancer. Clinically, pKi67 has been shown to correlate with metastasis and the clinical stage of tumors. In addition, it has been shown that Ki67 expression is significantly higher malignant tissues with poorly differentiated tumor cells, as compared with normal tissue. According to its predictive role, pKi67 expression identifies subpopulations of patients who are more likely to respond to a given therapy. The Ki67 labeling index is an independent prognostic factor for survival rate, which includes all stages and grade categories. There is a correlation between the ratio of Ki67‑positive malignant cells and patient survival. It has been shown that blocking of Ki67 either by microinjection of antibodies or through the use of antisense oligonucleotides leads to the arrest of cell proliferation. Specifically, antisense oligonucleotides and antibodies against pKi67 have been shown to inhibit the progression of the cell cycle. The Ki67 protein is well characterized at the molecular level and is extensively used as a prognostic and predictive marker for cancer diagnosis and treatment. Increasing evidence indicates that Ki67 may be an effective target in cancer therapy. It therefore merits further development, including testing in more sophisticated in vitro and appropriate in vivo models. This review provides an overview of recent advances in this field.
Oncology Letters | 2013
Feifei Chen; Guan Jiang; Kerui Xu; Junnian Zheng
The present review focuses on recent advances in the understanding of the molecular mechnisms by which interferon regulatory factor (IRF)-1 inhibits oncogenesis. IRF-1 is associated with regulation of interferon α and β transcription. In addition, numerous clinical studies have indicated that IRF-1 gene deletion or rearrangement correlates with development of specific forms of human cancer. IRF-1 has been revealed to exhibit marked functional diversity in the regulation of oncogenesis. IRF-1 activates a set of target genes associated with regulation of the cell cycle, apoptosis and the immune response. The role of IRF-1 in the regulation of various types of human tumor has important implications for understanding the susceptibility and progression of cancer. In addition, an improved understanding of the role of IRF-1 in the pathological processes that lead to human malignant diseases may aid development of novel therapeutic strategies.
Cancer Letters | 2016
Yong Xin; Qian Huang; Jian-Qin Tang; Xiaoyang Hou; Pei Zhang; Long Zhen Zhang; Guan Jiang
Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed.
Tumor Biology | 2013
Guan Jiang; Ai-Jun Jiang; Qian Cheng; Hui Tian; Liantao Li; Junnian Zheng
Malignant melanoma is one of the most lethal and aggressive human malignancies. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to malignant melanoma. The alkylating agent temozolomide (TMZ) is one of the most effective single chemotherapeutic agents for patients with malignant melanoma, but resistance develops quickly and with high frequency. We constructed a dual-regulated oncolytic adenovirus expressing interleukin 24 (IL-24) gene (Ki67-ZD55-IL-24) by utilizing the Ki67 promoter to replace the native viral promoter of E1A gene. We investigated whether a combination of Ki67-ZD55-IL-24-mediated gene virotherapy and chemotherapy using TMZ produces increased cytotoxicity against human melanoma cells via the induction of apoptosis. Our data indicate that this novel strategy thus holds promising potentials for further developing an effective approach to treat malignant melanoma.
Cancer Biotherapy and Radiopharmaceuticals | 2013
Zhengxiang Han; Hongmei Wang; Guan Jiang; Xiuping Du; Xiang-Yang Gao; Dong-Sheng Pei
Lung cancer is the leading cause of death from malignancy in people and over 85% of these patients eventually die from disseminated disease. Paclitaxel (TAX) is widely used as an antimicrotubule agent for the treatment of lung cancer. Unfortunately, the resistance to this antimicrotubule agent occurs frequently. Stathmin (STMN1) is a ubiquitous microtubule destabilizing protein linked to cancer and cell health and its expression level often correlates with cancer stage progression and prognosis for survival. Overexpression of the antiapoptotic protein Bcl-2 has been shown to prolong drug-induced growth arrest, potentially inducing resistance. In this study, we used a short hairpin RNA (shRNA) approach to evaluate the effect of STMN1 and Bcl-2 downregulation in the sensitivity to TAX in lung cancer cells. We achieved significant downregulation of STMN1 and Bcl-2 mRNA and protein expression by a combination of double shRNA treatment strategy. Our experimental data showed that inhibition of STMN1 and Bcl-2 expression with RNA interference can sensitize lung cancer cells to TAX. These findings suggest a novel approach to improve the efficacy of certain antimicrotubule agents against lung cancer by regulating the function of STMN1 and Bcl-2.
Tumor Biology | 2016
Ya-Ping Chen; Xiao-Yang Hou; Chun-Sheng Yang; Xiao-Xiao Jiang; Ming Yang; XiFeng Xu; ShouXin Feng; Yan-Qun Liu; Guan Jiang
Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2′-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.
PLOS ONE | 2017
Ming Yang; WenWen Guo; Chun-Sheng Yang; Jian-Qin Tang; Qian Huang; ShouXin Feng; AiJun Jiang; XiFeng Xu; Guan Jiang
Objective Many studies have previously investigated the potential association between mobile phone use and the risk of glioma. However, results from these individual studies are inconclusive and controversial. The objective of our study was to investigate the potential association between mobile phone use and subsequent glioma risk using meta-analysis. Methods We performed a systematic search of the Science Citation Index Embase and PubMed databases for studies reporting relevant data on mobile phone use and glioma in 1980–2016. The data were extracted and measured in terms of the odds ratio (OR) and 95% confidence interval (CI) using the random effects model. Subgroup analyses were also carried out. This meta-analysis eventually included 11 studies comprising a total 6028 cases and 11488 controls. Results There was a significant positive association between long-term mobile phone use (minimum, 10 years) and glioma (OR = 1.44, 95% CI = 1.08–1.91). And there was a significant positive association between long-term ipsilateral mobile phone use and the risk of glioma (OR = 1.46, 95% CI = 1.12–1.92). Long-term mobile phone use was associated with 2.22 times greater odds of low-grade glioma occurrence (OR = 2.22, 95% CI = 1.69–2.92). Mobile phone use of any duration was not associated with the odds of high-grade glioma (OR = 0.81, 95% CI = 0.72–0.92). Contralateral mobile phone use was not associated with glioma regardless of the duration of use. Similarly, this association was not observed when the analysis was limited to high-grade glioma. Conclusions Our results suggest that long-term mobile phone use may be associated with an increased risk of glioma. There was also an association between mobile phone use and low-grade glioma in the regular use or long-term use subgroups. However, current evidence is of poor quality and limited quantity. It is therefore necessary to conduct large sample, high quality research or better characterization of any potential association between long-term ipsilateral mobile phone use and glioma risk.
Molecular Cancer | 2017
Yong Xin; Min Huang; Wen Wen Guo; Qian Huang; Long Zhen Zhang; Guan Jiang
BackgroundRNA interference (RNAi), a newly developed method in which RNA molecules inhibit gene expression, has recently received considerable research attention. In the development of RNAi-based therapies, nanoparticles, which have distinctive size effects along with facile modification strategies and are capable of mediating effective RNAi with targeting potential, are attracting extensive interest.ObjectiveThis review presents an overview of the mechanisms of RNAi molecules in gene therapy and the different nanoparticles used to deliver RNAi molecules; briefly describes the current uses of RNAi in cancer therapy along with the nano-based delivery of RNA molecules in previous studies; and highlights some other carriers that have been applied in clinical settings. Finally, we discuss the nano-based delivery of RNAi therapeutics in preclinical development, including the current status and limitations of anti-cancer treatment.ConclusionWith the growing number of RNAi therapeutics entering the clinical phase, various nanocarriers are expected to play important roles in the delivery of RNAi molecules for cancer therapeutics.
Journal of Cancer Research and Clinical Oncology | 2017
Yong Xin; Fan Jiang; Chun-Sheng Yang; Qiuyue Yan; WenWen Guo; Qian Huang; Longzhen Zhang; Guan Jiang
BackgroundAutophagy is a metabolic response of cells to chemical and physical factors, such as nutrition or growth factor deprivation, proinflammatory state, hypoxia, accumulation of reactive oxygen species, presence of infectious agents, and DNA damage. Autophagy maintains the homeostasis of intracellular metabolism mainly by degrading cellular organelles and critical proteins. In a sense, autophagy protects cells from death. Radiotherapy is a powerful tool used to control tumor growth, and it can induce autophagy. The relationship between radiotherapy and autophagy is worthy of further investigation.MethodsWe searched various electronic databases including PubMed for peer-reviewed English-language articles and selected articles on the mechanism of autophagy, its role in cancer development and cancer treatment, and the relationship between the effect of radiation therapy and autophagy intensity.ResultsThis review has recently shown that the sensitivity of tumor cells to radiation therapy can be increased by regulating autophagy.ConclusionThe effects of autophagy vary, and autophagy provides various ways of enhancing radiosensitivity, including inhibition of autophagy, increase in autophagy, and altering the outcome of autophagy.