Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guang Nong is active.

Publication


Featured researches published by Guang Nong.


BMC Genomics | 2009

Comparative metagenomics of Daphnia symbionts

Weihong Qi; Guang Nong; James F. Preston; Frida Ben-Ami; Dieter Ebert

BackgroundShotgun sequences of DNA extracts from whole organisms allow a comprehensive assessment of possible symbionts. The current project makes use of four shotgun datasets from three species of the planktonic freshwater crustaceans Daphnia: one dataset from clones of D. pulex and D. pulicaria and two datasets from one clone of D. magna. We analyzed these datasets with three aims: First, we search for bacterial symbionts, which are present in all three species. Second, we search for evidence for Cyanobacteria and plastids, which had been suggested to occur as symbionts in a related Daphnia species. Third, we compare the metacommunities revealed by two different 454 pyrosequencing methods (GS 20 and GS FLX).ResultsIn all datasets we found evidence for a large number of bacteria belonging to diverse taxa. The vast majority of these were Proteobacteria. Of those, most sequences were assigned to different genera of the Betaproteobacteria family Comamonadaceae. Other taxa represented in all datasets included the genera Flavobacterium, Rhodobacter, Chromobacterium, Methylibium, Bordetella, Burkholderia and Cupriavidus. A few taxa matched sequences only from the D. pulex and the D. pulicaria datasets: Aeromonas, Pseudomonas and Delftia. Taxa with many hits specific to a single dataset were rare. For most of the identified taxa earlier studies reported the finding of related taxa in aquatic environmental samples. We found no clear evidence for the presence of symbiotic Cyanobacteria or plastids. The apparent similarity of the symbiont communities of the three Daphnia species breaks down on a species and strain level. Communities have a similar composition at a higher taxonomic level, but the actual sequences found are divergent. The two Daphnia magna datasets obtained from two different pyrosequencing platforms revealed rather similar results.ConclusionThree clones from three species of the genus Daphnia were found to harbor a rich community of symbionts. These communities are similar at the genus and higher taxonomic level, but are composed of different species. The similarity of these three symbiont communities hints that some of these associations may be stable in the long-term.


Plant Molecular Biology | 2011

Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production

Jae Yoon Kim; Musa Kavas; Walid M. Fouad; Guang Nong; James F. Preston; Fredy Altpeter

Overcoming the recalcitrance in lignocellulosic biomass for efficient hydrolysis of the polysaccharides cellulose and hemicellulose to fermentable sugars is a research priority for the transition from a fossilfuel-based economy to a renewable carbohydrate economy. Methylglucuronoxylans (MeGXn) are the major components of hemicellulose in woody biofuel crops. Here, we describe efficient production of the GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants and demonstrate exceptional stability and catalytic activities of the in planta produced enzyme. Fully expanded leaves from homotransplastomic plants contained enzymatically active Xyl10B at a level of 11–15% of their total soluble protein. Transplastomic plants and their seed progeny were morphologically indistinguishable from non-transgenic plants. Catalytic activity of in planta produced Xyl10B was detected with poplar, sweetgum and birchwood xylan substrates following incubation between 40 and 90°C and was also stable in dry and stored leaves. Optimal yields of Xyl10B were obtained from dry leaves if crude protein extraction was performed at 85°C. The transplastomic plant derived Xyl10B showed exceptional catalytic activity and enabled the complete hydrolysis of MeGXn to fermentable sugars with the help of a single accessory enzyme (α-glucuronidase) as revealed by the sugar release assay. Even without this accessory enzyme, the majority of MeGXn was hydrolyzed by the transplastomic plant-derived Xyl10B to fermentable xylose and xylobiose.


Journal of Bacteriology | 2007

Structure, Function, and Regulation of the Aldouronate Utilization Gene Cluster from Paenibacillus sp. Strain JDR-2

Virginia Chow; Guang Nong; James F. Preston

Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAX(n)), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAX(n) and rapidly assimilates the principal products, beta-1,4-xylobiose, beta-1,4-xylotriose, and MeGAX(3), the aldotetrauronate 4-O-methylglucuronosyl-alpha-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 alpha-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 beta-xylosidase/alpha-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAX(n) and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products.


Standards in Genomic Sciences | 2012

Complete genome sequence of Paenibacillus sp. strain JDR-2

Virginia Chow; Guang Nong; Franz St. John; John D. Rice; Olga Chertkov; David Bruce; Chris Detter; Thomas Brettin; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Amrita Pati; Joel Martin; Alex Copeland; Miriam Land; Lynne Goodwin; Jeffrey B. Jones; Lonnie O. Ingram; K.T. Shanmugam; James F. Preston

Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.


Applied and Environmental Microbiology | 2007

Variable-Number Tandem Repeats as Molecular Markers for Biotypes of Pasteuria ramosa in Daphnia spp.

Laurence Mouton; Guang Nong; James F. Preston; Dieter Ebert

ABSTRACT Variable-number tandem repeats (VNTRs) have been identified in populations of Pasteuria ramosa, a castrating endobacterium of Daphnia species. The allelic polymorphisms at 14 loci in laboratory and geographically diverse soil samples showed that VNTRs may serve as biomarkers for the genetic characterization of P. ramosa isolates.


Applied and Environmental Microbiology | 2009

Aldouronate utilization in Paenibacillus sp. strain JDR-2: Physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism.

Guang Nong; John D. Rice; Virginia Chow; James F. Preston

ABSTRACT Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 α-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/β-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX1), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX3), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAXn). The average rates of utilization of MeGAXn, MeGAX1, and MeGAX3 were 149.8, 59.4, and 54.3 μg xylose equivalents·ml−1·h−1, respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX1 and MeGAX3, releasing 4-O-methyl-d-glucuronate α-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX3, to xylose and xylobiose. The ability to utilize MeGAX1 provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAXn than that of MeGAX3 indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals.


FEMS Microbiology Ecology | 2004

Detection of Pasteuria penetrans infection in Meloidogyne arenaria race 1 in planta by polymerase chain reaction

Liesbeth M. Schmidt; James F. Preston; Guang Nong; D. W. Dickson; H.C. Aldrich

We report on the development of a PCR-based assay to detect Pasteuria penetrans infection of Meloidogyne arenaria in planta using specific primers for recently sequenced sigE, spoIIAB and atpF genes of P. penetrans biotype P20. Amplification of these genes in crude DNA extracts of ground tomato root galls using real-time kinetic PCR distinguished infected from uninfected M. arenaria race 1 by analysis of consensus thresholds for single copy genes. Fluorescent in situ hybridization (FISH) using the sigE primer sequence as a probe shows hybridization to P. penetrans cells in various stages of vegetative (pre-endospore) development. Ratios of gene copies for sigE and 16S rDNA were obtained for P. penetrans and compared to Bacillus subtilis as a genomic paradigm of endospore-forming bacteria. Phylogenetic analysis of the sigE gene from Gram-positive, endospore-forming bacteria finds P. penetrans most closely related Paenbacillus polymyxa. The sporulation genes (spo genes), particularly sigE, have sequence diversity that recommends them for species and biotype differentiation of the numerous Pasteuria isolates that infect a large number of plant-parasitic nematodes.


Applied and Environmental Microbiology | 2008

Genetic and Immunological Comparison of the Cladoceran Parasite Pasteuria ramosa with the Nematode Parasite Pasteuria penetrans

Liesbeth M. Schmidt; Laurence Mouton; Guang Nong; Dieter Ebert; James F. Preston

ABSTRACT Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts.


Applied and Environmental Microbiology | 2016

A 1,3-1,4-β-Glucan Utilization Regulon in Paenibacillus sp. Strain JDR-2

Virginia Chow; Young Sik Kim; Mun Su Rhee; Neha Sawhney; Franz St. John; Guang Nong; John D. Rice; James F. Preston

ABSTRACT Paenibacillus sp. strain JDR-2 (Paenibacillus JDR-2) secretes a multimodular cell-associated glycoside hydrolase family 10 (GH10) endoxylanase (XynA10A1) that catalyzes the depolymerization of methylglucuronoxylan (MeGXn) and rapidly assimilates the products of depolymerization. Efficient utilization of MeGXn has been postulated to result from the coupling of the processes of exocellular depolymerization and assimilation of oligosaccharide products, followed by intracellular metabolism. Growth and substrate utilization patterns with barley glucan and laminarin similar to those observed with MeGXn as a substrate suggest similar processes for 1,3-1,4-β-glucan and 1,3-β-glucan depolymerization and product assimilation. The Paenibacillus JDR-2 genome includes a cluster of genes encoding a secreted multimodular GH16 β-glucanase (Bgl16A1) containing surface layer homology (SLH) domains, a secreted GH16 β-glucanase with only a catalytic domain (Bgl16A2), transporter proteins, and transcriptional regulators. Recombinant Bgl16A1 and Bgl16A2 catalyze the formation of trisaccharides, tetrasaccharides, and larger oligosaccharides from barley glucan and of mono-, di-, tri-, and tetrasaccharides and larger oligosaccharides from laminarin. The lack of accumulation of depolymerization products during growth and a marked preference for polymeric glucan over depolymerization products support a process coupling extracellular depolymerization, assimilation, and intracellular metabolism for β-glucans similar to that ascribed to the GH10/GH67 xylan utilization system in Paenibacillus JDR-2. Coordinate expression of genes encoding GH16 β-glucanases, transporters, and transcriptional regulators supports their role as a regulon for the utilization of soluble β-glucans. As in the case of the xylan utilization regulons, this soluble β-glucan regulon provides advantages in the growth rate and yields on polymeric substrates and may be exploited for the efficient conversion of plant-derived polysaccharides to targeted products.


Plant Molecular Biology | 2017

In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane

Jae Yoon Kim; Guang Nong; John D. Rice; Maria Gallo; James F. Preston; Fredy Altpeter

Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105 °C and only residual catalytic activity at temperatures below 70 °C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35 °C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.

Collaboration


Dive into the Guang Nong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz St. John

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge