Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Rice is active.

Publication


Featured researches published by John D. Rice.


Journal of Bacteriology | 2008

Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine

Yoshikane Itoh; John D. Rice; Carlos Goller; Archana Pannuri; Jeannette Taylor; Jeffrey Meisner; Terry J. Beveridge; James F. Preston; Tony Romeo

The linear homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in diverse eubacteria. Its function in Escherichia coli K-12 requires the gene products of the pgaABCD operon, all of which are necessary for biofilm formation. PgaC is an apparent glycosyltransferase that is required for PGA synthesis. Using a monoclonal antibody directed against E. coli PGA, we now demonstrate that PgaD is also needed for PGA formation. The deletion of genes for the predicted outer membrane proteins PgaA and PgaB did not prevent PGA synthesis but did block its export, as shown by the results of immunoelectron microscopy (IEM) and antibody adsorption assays. IEM also revealed a conditional localization of PGA at the cell poles, the initial attachment site for biofilm formation. PgaA contains a predicted beta-barrel porin and a superhelical domain containing tetratricopeptide repeats, which may mediate protein-protein interactions, implying that it forms the outer membrane secretin for PGA. PgaB contains predicted carbohydrate binding and polysaccharide N-deacetylase domains. The overexpression of pgaB increased the primary amine content (glucosamine) of PGA. Site-directed mutations targeting the N-deacetylase catalytic activity of PgaB blocked PGA export and biofilm formation, implying that N-deacetylation promotes PGA export through the PgaA porin. The results of previous studies indicated that N-deacetylation of beta-1,6-GlcNAc in Staphylococcus epidermidis by the PgaB homolog, IcaB, anchors it to the cell surface. The deletion of icaB resulted in release of beta-1,6-GlcNAc into the growth medium. Thus, covalent modification of beta-1,6-GlcNAc by N-deacetylation serves distinct biological functions in gram-negative and gram-positive species, dictated by cell envelope differences.


Journal of Bacteriology | 2006

Characterization of XynC from Bacillus subtilis subsp. subtilis Strain 168 and Analysis of Its Role in Depolymerization of Glucuronoxylan

Franz J. St. John; John D. Rice; James F. Preston

Secretion of xylanase activities by Bacillus subtilis 168 supports the development of this well-defined genetic system for conversion of methylglucuronoxylan (MeGAXn [where n represents the number of xylose residues]) in the hemicellulose component of lignocellulosics to biobased products. In addition to the characterized glycosyl hydrolase family 11 (GH 11) endoxylanase designated XynA, B. subtilis 168 secretes a second endoxylanase as the translated product of the ynfF gene. This sequence shows remarkable homology to the GH 5 endoxylanase secreted by strains of Erwinia chrysanthemi. To determine its properties and potential role in the depolymerization of MeGAXn, the ynfF gene was cloned and overexpressed to provide an endoxylanase, designated XynC, which was characterized with respect to substrate preference, kinetic properties, and product formation. With different sources of MeGAXn as the substrate, the specific activity increased with increasing methylglucuronosyl substitutions on the beta-1,4-xylan chain. With MeGAXn from sweetgum as a preferred substrate, XynC exhibited a Vmax of 59.9 units/mg XynC, a Km of 1.63 mg MeGAXn/ml, and a k(cat) of 2,635/minute at pH 6.0 and 37 degrees C. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and 1H nuclear magnetic resonance data revealed that each hydrolysis product has a single glucuronosyl substitution penultimate to the reducing terminal xylose. This detailed analysis of XynC from B. subtilis 168 defines the unique depolymerization process catalyzed by the GH 5 endoxylanases. Based upon product analysis, B. subtilis 168 secretes both XynA and XynC. Expression of xynA was subject to MeGAXn induction; xynC expression was constitutive with growth on different substrates. Translation and secretion of both GH 11 and GH 5 endoxylanases by the fully sequenced and genetically malleable B. subtilis 168 recommends this bacterium for the introduction of genes required for the complete utilization of products of the enzyme-catalyzed depolymerization of MeGAXn. B. subtilis may serve as a model platform for development of gram-positive biocatalysts for conversion of lignocellulosic materials to renewable fuels and chemicals.


Applied and Environmental Microbiology | 2006

Paenibacillus sp. Strain JDR-2 and XynA1: a Novel System for Methylglucuronoxylan Utilization

Franz J. StJohn; John D. Rice; James F. Preston

ABSTRACT Environmental and economic factors predicate the need for efficient processing of renewable sources of fuels and chemicals. To fulfill this need, microbial biocatalysts must be developed to efficiently process the hemicellulose fraction of lignocellulosic biomass for fermentation of pentoses. The predominance of methylglucuronoxylan (MeGAXn), a β-1,4 xylan in which 10% to 20% of the xylose residues are substituted with α-1,2-4-O-methylglucuronate residues, in hemicellulose fractions of hardwood and crop residues has made this a target for processing and fermentation. A Paenibacillus sp. (strain JDR-2) has been isolated and characterized for its ability to efficiently utilize MeGAXn. A modular xylanase (XynA1) of glycosyl hydrolase family 10 (GH 10) was identified through DNA sequence analysis that consists of a triplicate family 22 carbohydrate binding module followed by a GH 10 catalytic domain followed by a single family 9 carbohydrate binding module and concluding with C-terminal triplicate surface layer homology (SLH) domains. Immunodetection of the catalytic domain of XynA1 (XynA1 CD) indicates that the enzyme is associated with the cell wall fraction, supporting an anchoring role for the SLH modules. With MeGAXn as substrate, XynA1 CD generated xylobiose and aldotetrauronate (MeGAX3) as predominant products. The inability to detect depolymerization products in medium during exponential growth of Paenibacillus sp. strain JDR-2 on MeGAXn, as well as decreased growth rate and yield with XynA1 CD-generated xylooligosaccharides and aldouronates as substrates, indicates that XynA1 catalyzes a depolymerization process coupled to product assimilation. This depolymerization/assimilation system may be utilized for development of biocatalysts to efficiently convert MeGAXn to alternative fuels and biobased products.


Journal of Molecular Biology | 2011

Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase.

Franz J. St. John; Jason C. Hurlbert; John D. Rice; James F. Preston; Edwin Pozharski

Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGX(n)) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGX(n) by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGX(n) in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGX(n) polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.


Phytochemistry | 1983

Low temperature induction of invertase activity in grapefruit flavedo tissue

Albert C. Purvis; John D. Rice

Abstract Invertase activity increased in the flavedo tissue of ‘Marsh’ grapefruit ( Citrus paradisi Macf.) when trees were exposed to cold hardening temperatures and decreased at dehardening temperatures. Invertase activity also increased in the flavedo of detached fruit stored at 5δ. Reducing sugar levels paralleled invertase activity while sucrose levels were inversely related to invertase levels. The mechanism by which low temperatures induce invertase activity in grapefruit flavedo tissue was not determined. However, results indicated that a proteinaceous inhibitor, similar to the one found in potato tubers, is not involved in the regulation of invertase activity in flavedo tissue of grapefruit.


Standards in Genomic Sciences | 2012

Complete genome sequence of Paenibacillus sp. strain JDR-2

Virginia Chow; Guang Nong; Franz St. John; John D. Rice; Olga Chertkov; David Bruce; Chris Detter; Thomas Brettin; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Amrita Pati; Joel Martin; Alex Copeland; Miriam Land; Lynne Goodwin; Jeffrey B. Jones; Lonnie O. Ingram; K.T. Shanmugam; James F. Preston

Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.


Applied and Environmental Microbiology | 2014

Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston

ABSTRACT Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGX n ), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGX n to release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3 in which the internal xylose is substituted with methylglucuronate (MeG). Deletion of xynA results in the accumulation of β-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of the xynC gene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. These B. subtilis lines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.


Applied and Environmental Microbiology | 2009

Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1.

Changhao Bi; John D. Rice; James F. Preston

ABSTRACT Acid pretreatment is commonly used to release pentoses from the hemicellulose fraction of cellulosic biomass for bioconversion. The predominant pentose in the hemicellulose fraction of hardwoods and crop residues is xylose in the polysaccharide methylglucuronoxylan, in which as many as one in six of the β-1,4-linked xylopyranose residues is substituted with α-1,2-linked 4-O-methylglucuronopyranose. Resistance of the α-1,2-methylglucuronosyl linkages to acid hydrolysis results in release of the aldobiuronate 4-O-methylglucuronoxylose, which is not fermented by bacterial biocatalysts currently used for bioconversion of hemicellulose. Enterobacter asburiae strain JDR-1, isolated from colonized hardwood (sweetgum), efficiently ferments both methylglucuronoxylose and xylose, producing predominantly ethanol and acetate. 13C-nuclear magnetic resonance studies defined the Embden-Meyerhof pathway for metabolism of glucose and the pentose phosphate pathway for xylose metabolism. Rates of substrate utilization, product formation, and molar growth yields indicated methylglucuronoxylose is transported into the cell and hydrolyzed to release methanol, xylose, and hexauronate. Enterobacter asburiae strain JDR-1 is the first microorganism described that ferments methylglucuronoxylose generated along with xylose during the acid-mediated saccharification of hemicellulose. Genetic definition of the methylglucuronoxylose utilization pathway may allow metabolic engineering of established gram-negative bacterial biocatalysts for complete bioconversion of acid hydrolysates of methylglucuronoxylan. Alternatively, Enterobacter asburiae strain JDR-1 may be engineered for the efficient conversion of acid hydrolysates of hemicellulose to biofuels and chemical feedstocks.


Applied and Environmental Microbiology | 2009

Aldouronate utilization in Paenibacillus sp. strain JDR-2: Physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism.

Guang Nong; John D. Rice; Virginia Chow; James F. Preston

ABSTRACT Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 α-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/β-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX1), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX3), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAXn). The average rates of utilization of MeGAXn, MeGAX1, and MeGAX3 were 149.8, 59.4, and 54.3 μg xylose equivalents·ml−1·h−1, respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX1 and MeGAX3, releasing 4-O-methyl-d-glucuronate α-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX3, to xylose and xylobiose. The ability to utilize MeGAX1 provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAXn than that of MeGAX3 indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals.


Carbohydrate Research | 1991

Kinetic comparisons of trimer-generating pectate and alginate lyases by reversed-phase ion-pair liquid chromatography

James F. Preston; John D. Rice; Marjorie C. Chow; Bette Jo Brown

Abstract Reversed-phase ion-pair liquid chromatography has been applied to the kinetic analysis of trimer-generating pectate lyases secreted by Clostridium populeti, Lachnospira multiparus , and two different strains of Erwinia chrysanthemi . A trimer-generating alginate lyase secreted by a marine bacterium was also analyzed and compared. A common feature of these enzymes is the initial formation of trimer, tetramer, pentamer, and larger oligouronates. Dimer can be formed from the later eliminative cleavage of pentamer and larger oligouronates. A general depolymerizing process involving an endolytic, followed by an exolytic mechanism, has been ascribed to these enzymes, with subtle differences noted with respect to the quantities of products formed with time.

Collaboration


Dive into the John D. Rice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge