Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangan He is active.

Publication


Featured researches published by Guangan He.


Oncogene | 2005

Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities.

Guangan He; Zahid H. Siddik; Zaifeng Huang; Ruoning Wang; John M. Koomen; Ryuji Kobayashi; Abdul R. Khokhar; Jian Kuang

DNA damage often activates the p53–p21 pathway and causes G1-phase arrest in mammalian cells. Although there is ample evidence that p21 induction by p53 leads to Cdk2 inhibition, it is unclear whether this checkpoint event also leads to Cdk4 inhibition. Diaminocyclohexane(trans-diacetato)(dichloro) platinum(IV) (DAP), a platinum-based coordination complex, is a DNA-damaging agent that is effective against a variety of tumor cells resistant to the parental drug cisplatin. Our previous studies established that treatment of human cancer cells with low effective concentrations of DAP specifically activates the G1-phase checkpoint and simultaneously inhibit Cdk4 and Cdk2 activities. Here we demonstrate that DAP treatment of human cancer cells activates the p53–p21 pathway without activating other known mechanisms that inhibit Cdk4 and Cdk2 activities. The induced p21 binds to both the Cdk4/cyclin D and Cdk2/cyclin E complexes and inhibits both of their kinase activities. Conversely, inhibition of p21 induction by cycloheximide or by p21 gene deletion prevents DAP-induced inhibition of Cdk4 and Cdk2 activities. Attenuated p53 expression and p21 induction also eliminates DAP-induced G1-phase arrest and inhibition of Cdk4 and Cdk2 activities. Together, these findings establish that activation of the p53–p21 pathway is responsible for the DAP-induced G1-phase checkpoint response and provide the first solid evidence that p21 induction by p53 during a DNA damage-induced G1-phase checkpoint response inhibits both Cdk4 and Cdk2 activities.


Cell | 2007

Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition

Ruoning Wang; Guangan He; Mayra Nelman-Gonzalez; Cheryl L. Ashorn; Gary E. Gallick; P. Todd Stukenberg; Marc W. Kirschner; Jian Kuang

Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAPK), the Xenopus ortholog of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase-arrested Xenopus eggs. In Xenopus oocytes, p42 MAPK interacts with hypophosphorylated Cdc25 before meiotic induction. During meiotic induction, p42 MAPK phosphorylates Cdc25 at T48, T138, and S205, increasing Cdc25s phosphatase activity. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis. Inhibition of ERK activation partially inhibits T48 phosphorylation, Cdc25C activation, and mitotic induction. These findings demonstrate that ERK-MAP kinases are directly involved in activating Cdc25 during the G(2)/M transition.


Journal of Biological Chemistry | 2006

Involvement of the Conserved Adaptor Protein Alix in Actin Cytoskeleton Assembly

Shujuan Pan; Ruoning Wang; Xi Zhou; Guangan He; John M. Koomen; Ryuji Kobayashi; Le Sun; Joe Corvera; Gary E. Gallick; Jian Kuang

The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with α-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of α-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.


Journal of Clinical Oncology | 2012

Tissue Platinum Concentration and Tumor Response in Non–Small-Cell Lung Cancer

Eric S. Kim; J. Jack Lee; Guangan He; Chi Wan Chow; Junya Fujimoto; Neda Kalhor; Stephen G. Swisher; Ignacio I. Wistuba; David J. Stewart; Zahid H. Siddik

PURPOSE Platinum resistance is a major limitation in the treatment of advanced non-small-cell lung cancer (NSCLC). Reduced intracellular drug accumulation is one of the most consistently identified features of platinum-resistant cell lines, but clinical data are limited. We assessed the effects of tissue platinum concentrations on response and survival in NSCLC. PATIENTS AND METHODS We measured total platinum concentrations by flameless atomic absorption spectrophotometry in 44 archived fresh-frozen NSCLC specimens from patients who underwent surgical resection after neoadjuvant platinum-based chemotherapy. Tissue platinum concentration was correlated with percent reduction in tumor size on post- versus prechemotherapy computed tomography scans. The relationship between tissue platinum concentration and survival was assessed by univariate and multicovariate Cox proportional hazards regression model analysis and Kaplan-Meier analysis. RESULTS Tissue platinum concentration correlated significantly with percent reduction in tumor size (P < .001). The same correlations were seen with cisplatin, carboplatin, and all histology subgroups. Furthermore, there was no significant impact of potential variables such as number of cycles and time lapse from last chemotherapy on platinum concentration. Patients with higher platinum concentration had longer time to recurrence (P = .034), progression-free survival (P = .018), and overall survival (P = .005) in the multicovariate Cox model analysis after adjusting for number of cycles. CONCLUSION This clinical study established a relationship between tissue platinum concentration and response in NSCLC. It suggests that reduced platinum accumulation might be an important mechanism of platinum resistance in the clinical setting. Further studies investigating factors that modulate intracellular platinum concentration are warranted.


Gynecologic Oncology | 2011

The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog

Guangan He; Jian Kuang; Abdul R. Khokhar; Zahid H. Siddik

OBJECTIVE Cisplatin is a DNA-damaging antitumor agent that is highly effective in treating ovarian cancer. It activates the p53/p21 pathway for its cytotoxic mode of action, but it does not induce p21-dependent cell cycle arrest in G1. Therefore, we investigated this paradox, and used the model analog DAP as a positive control for p21-dependent G1-arrest. METHODS Studies were conducted in p53-proficient ovarian A2780 tumor cells to examine Cdk activity, cell cycle distribution and DNA damage signaling after cisplatin or DAP in combination with the mitotic inhibitor nocodazole. RESULTS Cisplatin consistently induced transient S-phase arrest by inhibiting Cdk2/cyclin A complex in S-phase at 12 h and then a durable G2/M-arrest by inhibiting Cdc2/cyclin B complex at 12-18 h. These inhibitions were associated with Chk1 and Chk2 activation and resultant increase in inhibitory tyrosine phosphorylation of Cdk2 and Cdc2. Cisplatin also potently inhibited G1-phase Cdk4/cyclin D1 and Cdk2/cyclin E activities at ~18 h. In agreement, exposure of cisplatin-treated A2780, HCT-116(p53-/-) and HCT-116(p21-/-) tumor cells to nocodazole revealed limited G1-arrest that was dependent on p53 and p21. In contrast, the durable G1-arrest by DAP, which failed to activate Chk1 and Chk2, was unaffected by nocodazole. CONCLUSIONS Cisplatin induced G1-arrest, but at an attenuated level. This was primarily due to orchestration of Cdk inhibition in S-phase first, then in G2, and finally in G1 that effectively blocked cells in G2 and prevented cells from progressing and arresting in G1. These studies demonstrate that cisplatin unequivocally activates G1-checkpoint response, but the fidelity of G1-arrest is compromised by Chk1/2 activation and checkpoint response in S- and G2/M-phase.


British Journal of Cancer | 2006

Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21

Guangan He; Jian Kuang; Zaifeng Huang; John M. Koomen; Ryuji Kobayashi; Abdul R. Khokhar; Zahid H. Siddik

The cisplatin analogue 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinumIV (DAP) is a DNA-damaging agent that will be entering clinical trials for its potent cytotoxic effects against cisplatin-resistant tumour cells. This cytotoxicity may reside in its ability to selectively activate G1-phase checkpoint response by inhibiting CDKs via the p53/p21 pathway. We have now evaluated the role of another CDK inhibitor p27 as a contributor to DAP-mediated inhibition of G1-phase CDK2 activity. Our studies in ovarian A2780 tumour cells demonstrate that p27 levels induced by DAP are comparable to or greater than those seen for p21. The induction of p27 is not through a transcriptional mechanism, but rather is due to a four-fold increase in protein stabilisation through a mechanism dependent on p21. Moreover, DAP-induced p21 promoted the selective increase of p27 in the CDK2 complex, but not in CDK4 complex, and this selective increase contributed to inhibition of the CDK2 kinase activity. The inhibited complex contained either p27 or p21, but not both, with the relative levels of cyclin E associated with p27 and p21 indicating that about 25% of the inhibition of CDK2 activity was due to p27 and 75% due to p21. This study provides the first evidence that p27 upregulation is directly attributable to activation of the p53/p21 pathway by a DNA-damaging agent, and promulgates p53/p21/p27 axis as a significant component of checkpoint response.


Journal of the National Cancer Institute | 2011

The role of p27(Kip1) in dasatinib-enhanced paclitaxel cytotoxicity in human ovarian cancer cells.

Xiao Feng Le; Weiqun Mao; Guangan He; Francois X. Claret; Weiya Xia; Ahmed Ashour Ahmed; Mien Chie Hung; Zahid H. Siddik; Robert C. Bast

BACKGROUND Less than 50% of ovarian cancers respond to paclitaxel. Effective strategies are needed to enhance paclitaxel sensitivity. METHODS A library of silencing RNAs (siRNAs) was used to identify kinases that regulate paclitaxel sensitivity in human ovarian cancer SKOv3 cells. The effect of dasatinib, an inhibitor of Src and Abl kinases, on paclitaxel sensitivity was measured in ovarian cancer cells and HEY xenografts. The roles of p27(Kip1), Bcl-2, and Cdk1 in apoptosis induced by dasatinib and paclitaxel were assessed using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, siRNA knockdown of gene expression, transfection with Bcl-2 and Cdk1 expression vectors, and flow cytometry. All statistical tests were two-sided. RESULTS Src family and Abl kinases were identified as modulators of paclitaxel sensitivity in SKOv3 cells. The siRNA knockdown of Src, Fyn, or Abl1 enhanced paclitaxel-mediated growth inhibition in ovarian cancer cells compared with a control siRNA. HEY cells treated with dasatinib plus paclitaxel formed fewer colonies than did cells treated with either agent alone. Treatment of HEY xenograft-bearing mice with dasatinib plus paclitaxel inhibited tumor growth more than treatment with either agent alone (average tumor volume per mouse, dasatinib + paclitaxel vs paclitaxel: 0.28 vs. 0.81 cm3, difference = 0.53 cm3, 95% confidence interval [CI] = 0.44 to 0.62 cm3, P = .014); dasatinib + paclitaxel vs. dasatinib: 0.28 vs. 0.55 cm3, difference = 0.27 cm3, 95% CI = 0.21 to 0.33 cm3, P = .035). Combined treatment induced more TUNEL-positive apoptotic cells than did either agent alone. The siRNA knockdown of p27(Kip1) decreased dasatinib- and paclitaxel-induced apoptosis compared with a negative control siRNA (sub-G1 fraction, control siRNA vs. p27(Kip1) siRNA: 42.5% vs. 20.1%, difference = 22.4%, 95% CI = 20.1% to 24.7%, P = .017). Studies with forced expression and siRNA knockdown of Bcl-2 and Cdk1 suggest that dasatinib-mediated induction of p27(Kip1) enhanced paclitaxel-induced apoptosis by negatively regulating Bcl-2 and Cdk1 expression. CONCLUSION Inhibition of Src family and Abl kinases with either siRNAs or dasatinib enhances paclitaxel sensitivity of ovarian cancer cells through p27(Kip1)-mediated suppression of Bcl-2 and Cdk1 expression.


International Journal of Hyperthermia | 2010

Fever-range whole body thermotherapy combined with oxaliplatin: a curative regimen in a pre-clinical breast cancer model.

R. Wanda Rowe; Frederick R. Strebel; Jesse M. Proett; Wanleng Deng; Diana Chan; Guangan He; Zahid H. Siddik; Joan M. C. Bull

Purpose: Studies were conducted to test whether fever-range whole body thermal therapy would boost the efficacy of oxaliplatin chemotherapy without substantial toxicity. Materials and methods: The effect of mild heat (40°C) on oxaliplatin cytotoxicity, cellular uptake, and platinum-DNA adduct formation was studied in vitro using the MTLn3 tumour cell line. In vivo oxaliplatin was administered at various doses and times before, during and after fever-range thermal therapy (6 h at 40°C) to rats bearing an MTLn3 mammary adenocarcinoma. Tumour growth, survival, and toxicity were measured to determine treatment outcome. Results: Heating halved the oxaliplatin IC-50 dose for MTLn3 cells. Cellular uptake of platinum and platinum adducts increased by 34% and 36%, respectively, with heat. In vivo, 50% of all rats given 10 mg/kg oxaliplatin 24 h before thermal therapy were completely immunologically cured, while a further 11% regressed their primary tumour but ultimately succumbed to metastases, and 17% experienced a limited response with increased survival. The curative response occurred only in a narrow range of doses, with most cures at 10 mg/kg. Thermochemotherapy-treated, but uncured, animals had delayed incidence and slowed growth of metastases. Anti-tumour efficacy was greatest, and toxicity was least, when oxaliplatin was administered 12 or 24 h before fever-range whole body thermal therapy. Conclusions: When properly dosed and scheduled, oxaliplatin thermochemotherapy achieved permanent eradication of all primary and metastatic tumours in 50% of animals, seemingly through an immune response. Successful clinical translation of this protocol would yield hitherto unseen cures and substantial improvement in quality of life.


Cancer Chemotherapy and Pharmacology | 2010

Protein kinase inhibitors emodin and dichloro-ribofuranosylbenzimidazole modulate the cellular accumulation and cytotoxicity of cisplatin in a schedule-dependent manner

Tetsuji Kurokawa; Guangan He; Zahid H. Siddik

PurposeProtein kinase inhibitors (PKI) have become prominent agents in cancer therapeutics. However, the specificity for target kinase inhibition can be poor and unwanted effects can emerge in combination regimens. The PKI emodin, for instance, can produce mixed results when combined with cisplatin, and we have sought a biochemical pharmacologic explanation for the negative cytotoxic effects.MethodsHuman ovarian A2780 tumor cells were exposed to the PKI emodin or dichloro-ribofuranosylbenzimidazole (DRB) with cisplatin using several schedules, and cytotoxicity determined by a growth inhibition assay. Intracellular platinum levels and DNA adducts were estimated by flameless atomic absorption spectrophotometry.ResultsWhen A2780 cells were exposed first to emodin or DRB and then to cisplatin alone, the cytotoxic effects of cisplatin were significantly enhanced, whereas simultaneous exposure did not enhance the cytotoxicity, but instead inhibited it in the case of DRB. The increase in activity of cisplatin in the sequenced schedule was not due to increases in intracellular levels of cisplatin or DNA adducts, whereas the cytotoxic inhibition was related to a significant fall in both intracellular platinum levels and DNA adducts, which were ascribed to inhibition in cisplatin uptake. Knockdown of hCtr1 (the human copper transporter 1) by siRNA abrogated this inhibition in cisplatin uptake.ConclusionThe results demonstrate that co-exposure of tumor cells to emodin or DRB with cisplatin inhibits platinum drug uptake by impacting the hCtr1 transporter and, thereby, reduce the cytotoxicity of cisplatin. Based on our findings, scheduling of the PKI and the cytotoxic agent should be a major consideration in the clinical design of combination regimens.


Molecular Cancer Research | 2017

Functional activation of mutant p53 by platinum analogues in cisplatin-resistant cells is dependent on phosphorylation

Xiaolei Xie; Guangan He; Zahid H. Siddik

Dysfunctionality of the p53 tumor suppressor is a major cause of therapeutic drug resistance in cancer. Recently, we reported that mutant, but otherwise functional, p53v172F was inactivated in cisplatin-resistant 2780CP/Cl-16 and 2780CP/Cl-24 human ovarian tumor cells by increased recruitment of the inhibitor MDM4. The current study demonstrates that, unlike cisplatin, platinum analogues oxaliplatin and DACH-diacetato-dichloro-Pt(IV) (DAP) strongly stabilize and activate p53v172F in resistant cells, as indicated by prolonged p53 half-life and transactivation of targets p21 (CDKN1A) and MDM2. This increase in MDM2 reduced MDM4 levels in cell lysates as well as the p53 immunocomplex and prevented reversion of p53 to the inactive p53-MDM2-MDM4–bound state. Phosphorylation of p53 at Ser15 was demonstrated by all three drugs in sensitive A2780 and corresponding resistant 2780CP/Cl-16 and 2780CP/Cl-24 cell lines. However, cisplatin induced Ser20 phosphorylation in A2780 cells only, but not in resistant cells; in contrast, both DAP and oxaliplatin induced this phosphorylation in all three cell lines. The inference that Ser20 phosphorylation is more important for p53 activation was confirmed by ectopic expression of a phosphomimetic (S20D) mutant p53 that displayed reduced binding, relative to wild-type p53, to both MDM2 and MDM4 in p53-knockout A2780 cells. In consonance, temporal studies demonstrated drug-induced Ser15 phosphorylation coincided with p53 stabilization, whereas Ser20 phosphorylation coincided with p53 transactivation. Implications: Cisplatin fails to activate the pathway involved in phosphorylating mutant p53v172F at Ser20 in resistant cells, but this phosphorylation is restored by oxaliplatin and DAP that reactivates p53 function and circumvents cisplatin resistance. Mol Cancer Res; 15(3); 328–39. ©2016 AACR.

Collaboration


Dive into the Guangan He's collaboration.

Top Co-Authors

Avatar

Zahid H. Siddik

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Kuang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul R. Khokhar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John M. Koomen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Ryuji Kobayashi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruoning Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zaifeng Huang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge