Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangbi Li is active.

Publication


Featured researches published by Guangbi Li.


Journal of Biological Chemistry | 2014

Nod-like Receptor Protein 3 (NLRP3) Inflammasome Activation and Podocyte Injury via Thioredoxin-Interacting Protein (TXNIP) during Hyperhomocysteinemia *

Justine M. Abais; Min Xia; Guangbi Li; Yang Chen; Sabena M. Conley; Todd W.B. Gehr; Krishna M. Boini; Pin-Lan Li

Background: Hyperhomocysteinemia (hHcys) contributes to glomerular injury by activating NLRP3 inflammasomes in response to increased oxidative stress. Results: Thioredoxin-interacting protein (TXNIP) aggregated with NLRP3 inflammasomes, and blocking TXNIP prevented inflammasome activation during hHcys. Conclusion: TXNIP uniquely links changes in oxidative stress to hHcys-induced NLRP3 inflammasome activation. Significance: Glomerular injury related to hHcys can be prevented by TXNIP inhibition. NADPH oxidase-derived reactive oxygen species (ROS) have been reported to activate NLRP3 inflammasomes resulting in podocyte and glomerular injury during hyperhomocysteinemia (hHcys). However, the mechanism by which the inflammasome senses ROS is still unknown in podocytes upon hHcys stimulation. The current study explored whether thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin and ROS sensor, mediates hHcys-induced NLRP3 inflammasome activation and consequent glomerular injury. In cultured podocytes, size exclusion chromatography and confocal microscopy showed that inhibition of TXNIP by siRNA or verapamil prevented Hcys-induced TXNIP protein recruitment to form NLRP3 inflammasomes and abolished Hcys-induced increases in caspase-1 activity and IL-1β production. TXNIP inhibition protected podocytes from injury as shown by normal expression levels of podocyte markers, podocin and desmin. In vivo, adult C57BL/6J male mice were fed a folate-free diet for 4 weeks to induce hHcys, and TXNIP was inhibited by verapamil (1 mg/ml in drinking water) or by local microbubble-ultrasound TXNIP shRNA transfection. Evidenced by immunofluorescence and co-immunoprecipitation studies, glomerular inflammasome formation and TXNIP binding to NLRP3 were markedly increased in mice with hHcys but not in TXNIP shRNA-transfected mice or those receiving verapamil. Furthermore, TXNIP inhibition significantly reduced caspase-1 activity and IL-1β production in glomeruli of mice with hHcys. Correspondingly, TXNIP shRNA transfection and verapamil attenuated hHcys-induced proteinuria, albuminuria, glomerular damage, and podocyte injury. In conclusion, our results demonstrate that TXNIP binding to NLRP3 is a key signaling mechanism necessary for hHcys-induced NLRP3 inflammasome formation and activation and subsequent glomerular injury.


Free Radical Biology and Medicine | 2014

Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia

Justine M. Abais; Min Xia; Guangbi Li; Todd W.B. Gehr; Krishna M. Boini; Pin-Lan Li

Hyperhomocysteinemia (hHcys) is an important pathogenic factor contributing to the progression of end-stage renal disease. Recent studies have demonstrated the implication of nicotinamide adenine dinucleotide phosphate oxidase-mediated NLRP3 inflammasome activation in the development of podocyte injury and glomerular sclerosis during hHcys. However, it remains unknown which reactive oxygen species (ROS) are responsible for this activation of NLRP3 inflammasomes and how such action of ROS is controlled. This study tested the contribution of common endogenous ROS including superoxide (O2(-)), hydrogen peroxide (H2O2), peroxynitrite (ONOO(-)), and hydroxyl radical (OH) to the activation of NLRP3 inflammasomes in mouse podocytes and glomeruli. In vitro, confocal microscopy and size-exclusion chromatography demonstrated that dismutation of O2(-) by 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) and decomposition of H2O2 by catalase prevented Hcys-induced aggregation of NLRP3 inflammasome proteins and inhibited Hcys-induced caspase-1 activation and IL-1β production in mouse podocytes. However, scavenging of ONOO(-) or OH had no significant effect on either Hcys-induced NLRP3 inflammasome formation or activation. In vivo, scavenging of O2(-) by Tempol and removal of H2O2 by catalase substantially inhibited NLRP3 inflammasome formation and activation in glomeruli of hHcys mice as shown by reduced colocalization of NLRP3 with ASC or caspase-1 and inhibition of caspase-1 activation and IL-1β production. Furthermore, Tempol and catalase significantly attenuated hHcys-induced glomerular injury. In conclusion, endogenously produced O2(-) and H2O2 primarily contribute to NLRP3 inflammasome formation and activation in mouse glomeruli resulting in glomerular injury or consequent sclerosis during hHcys.


Biochimica et Biophysica Acta | 2014

Activation of Inflammasomes in Podocyte Injury of Mice on the High Fat Diet: Effects of ASC Gene Deletion and Silencing

Krishna M. Boini; Min Xia; Justin M. Abais; Guangbi Li; Ashley L. Pitzer; Todd W.B. Gehr; Yang Zhang; Pin-Lan Li

Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimers disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc(-/-)), wild type (Asc(+/+)) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc(-/-) mice or substantially reduced in Asc shRNA transfected mice compared to Asc(+/+) mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc(-/-) and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI) were also significantly attenuated in Asc(-/-) and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc(-/-) and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury.


Cellular Physiology and Biochemistry | 2014

Inhibition of Hyperhomocysteinemia-Induced Inflammasome Activation and Glomerular Sclerosis by NLRP3 Gene Deletion

Min Xia; Sabena M. Conley; Guangbi Li; Pin-Lan Li; Krishna M. Boini

Background/Aims: Hyperhomocysteinemia (hHcys) has been reported to initiate Nod-like receptor protein 3 (NLRP3) inflammasome formation and activation in podocytes, leading to glomerular dysfunction and sclerosis. However, it remains unknown whether Nlrp3 gene is critical for the formation and activation of inflammasomes in glomeruli of hHcys mice. Methods: Plasma homocysteine concentration was estimated utilizing HPLC, inflammasome formation and immunofluorescence expression from confocal microscopy, IL-1β production from ELISA. Results: Uninephrectomized Nlrp3 knockout (Nlrp3-/-) and wild type (Nlrp3+/+) and intra renal Nlrp3 shRNA-transfected wild type mice (Nlrp3 shRNA) were fed a folate free (FF) diet or normal chow (ND) for 4 weeks to produce hHcys. The plasma Hcys levels were significantly elevated in both Nlrp3-/- and Nlrp3+/+ mice fed a FF diet compared to ND fed mice. The FF diet significantly increased the colocalization of Nlrp3 with apoptosis-associated speck-like protein (ASC) or caspase-1, caspase-1 activity and IL-1β production in glomeruli of Nlrp3+/+, but not in Nlrp3-/- mice and local Nlrp3 shRNA transfected mice. Correspondingly, the glomerular damage index (GDI) and urinary protein excretion were significantly higher in Nlrp3+/+ mice compared to ND fed mice. However, the hHcys-induced increase in GDI and proteinuria were significantly lower in Nlrp3-/- and local Nlrp3 shRNA transfected mice than in Nlrp3+/+ mice. Immunocytochemical analysis showed that hHcys decreased expression of podocin and nephrin, but increased desmin expression in glomeruli of Nlrp3+/+ mice compared to Nlrp3-/- mice. Conclusion: Nlrp3 gene is an essential component of Nlrp3 inflammasomes and that targeting Nlrp3 may be important therapeutic strategy to prevent inflammasome activation and thereby protect podocytes and glomeruli from hHcys-induced injury.


Journal of Cellular and Molecular Medicine | 2013

Autophagy maturation associated with CD38‐mediated regulation of lysosome function in mouse glomerular podocytes

Jing Xiong; Min Xia; Ming Xu; Yang Zhang; Justine M. Abais; Guangbi Li; Christopher R. Riebling; Joseph K. Ritter; Krishna M. Boini; Pin-Lan Li

Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38‐mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3‐II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3‐II and the content of both APs detected by Cyto‐ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin‐induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co‐transfection of GFP‐LC3B and RFP‐Lamp1 expression vectors. A colocalization of GFP‐LC3B and RFP‐Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38‐mediated regulation by PPADS completely abolished rapamycin‐induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes.


Journal of Lipid Research | 2017

NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury.

Guangbi Li; Zhida Chen; Owais M. Bhat; Qinghua Zhang; Justine M. Abais-Battad; Sabena M. Conley; Joseph K. Ritter; Pin-Lan Li

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·− production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis


American Journal of Physiology-renal Physiology | 2017

Stimulation of diuresis and natriuresis by renomedullary infusion of a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase

Ashfaq Ahmad; Zdravka Daneva; Guangbi Li; Sara K Dempsey; Ningjun Li; Justin L. Poklis; Aron H. Lichtman; Pin-Lan Li; Joseph K. Ritter

The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min-1·kg-1) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied. IDFP treatment increased the urine formation rate and sodium excretion in a COX-2- but not COX-1-dependent manner. Neither anandamide nor IDFP affected the glomerular filtration rate. Neither systemic (0.625 mg·kg-1·30 min-1 iv) nor intramedullary (15 nmol·min-1·kg-1·30 min-1) IDFP pretreatment before intramedullary anandamide (15-30 nmol·min-1·kg-1) strictly blocked effects of anandamide, suggesting that hydrolysis of anandamide was not necessary for its diuretic effect. Intramedullary IDFP had no effect on renal blood flow but stimulated renal medullary blood flow. The effects of IDFP on urine flow rate and medullary blood flow were FAAH-dependent as demonstrated using FAAH knockout mice. Analysis of mouse urinary PGE2 concentrations by HPLC-electrospray ionization tandem mass spectrometry showed that IDFP treatment decreased urinary PGE2 These data are consistent with a role of FAAH and endogenous anandamide acting through a COX-2-dependent metabolite to regulate diuresis and salt excretion in the mouse kidney.


Oxidative Medicine and Cellular Longevity | 2018

NLRP3 Inflammasome Formation and Activation in Nonalcoholic Steatohepatitis: Therapeutic Target for Antimetabolic Syndrome Remedy FTZ

Yu Chen; Xingxiang He; Xinxu Yuan; Jinni Hong; Owais M. Bhat; Guangbi Li; Pin-Lan Li; Jiao Guo

The Nod-like receptor protein 3 (NLRP3) inflammasome activation not only serves as an intracellular machinery triggering inflammation but also produces uncanonical effects beyond inflammation such as changing cell metabolism and increasing cell membrane permeability. The present study was designed to test whether this NLRP3 inflammasome activation contributes to the “two-hit” injury during nonalcoholic steatohepatitis (NASH) and whether it can be a therapeutic target for the action of Fufang Zhenzhu Tiaozhi (FTZ), a widely used herbal remedy for hyperlipidemia and metabolic syndrome in China. We first demonstrated that NLRP3 inflammasome formation and activation as well as lipid deposition occurred in the liver of mice on the high-fat diet (HFD), as shown by increased NLRP3 aggregation, enhanced production of IL-1β and high mobility group box 1 (HMGB1), and remarkable lipid deposition in liver cells. FTZ extracts not only significantly reduced the NLRP3 inflammasome formation and activation but also attenuated the liver steatosis and fibrogenic phenotype changed. In in vitro studies, palmitic acid (PA) was found to increase colocalization of NLRP3 components and enhanced caspase-1 activity in hepatic stellate cells (HSCs), indicating enhanced formation and activation of NLRP3 inflammasomes by PA. PA also increased lipid deposition. Nlrp3 siRNA can reverse this effect by silencing the NLRP3 inflammasome and both with FTZ. In FTZ-treated cells, not only inflammasome formation and activation was substantially attenuated but also lipid deposition in HSCs was blocked. This inhibition of FTZ on lipid deposition was similar to the effects of glycyrrhizin, an HMGB1 inhibitor. Mechanistically, stimulated membrane raft redox signaling platform formation and increased O2 •− production by PA to activate NLRP3 inflammasomes in HSCs was blocked by FTZ treatment. It is concluded that FTZ extracts inhibit NASH by its action on both inflammatory response and liver lipid metabolism associated with NLRP3 inflammasome formation and activation.


Biochimica et Biophysica Acta | 2018

Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation

Guangbi Li; Qinghua Zhang; Jinni Hong; Joseph K. Ritter; Pin-Lan Li

The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.


Cellular Physiology and Biochemistry | 2017

Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy

Jun-Xiang Bao; Guangbi Li; Xinxu Yuan; Erich Gulbins; Pin-Lan Li

Background: Autophagy disorder contributes to dedifferentiation of arterial smooth muscle cells, but the mechanisms are poorly understood. Here, we sought to investigate the role of scaffolding adaptor p62/SQSTM1 (p62) in phenotype switching of mouse coronary arterial myocytes (CAMs) induced by CD38 gene deficiency or lysosomal dysfunction which blocks autophagic flux in the cells. Methods: Protein expression was measured by western blot analysis and immunofluorescent staining. Cell cycle and proliferation rate were analyzed by flow cytometry and MTS assay respectively. mRNA abundance was tested by qRT-PCR. Results: CD38 gene deficiency or bafilomycin A1 (baf), a selective lysosomal inhibitor treatment increased proliferation rate and vimentin expression in CAMs which was prevented by p62 gene silencing. Cell percentage in G2/M and G0/G1 phase was decreased and increased by CD38 deficiency or baf treatment, respectively which was accompanied by accrual of cyclin-dependent kinase 1 (CDK1) protein. Although free ubiquitin content was increased, the colocalization of it to CDK1 was markedly decreased in CD38-/- or baf treated CAMs. Furthermore, the changes in both cell cycle and CDK1 ubiquitinylation could be restored by p62 gene silencing. Conclusion: The results suggest in CD38-/- or baf treated CAMs, p62 accumulation promotes phenotype transition and proliferation by accelerating cell cycle progress through G2/M which might relate to the compromised ubiquitinylation and degradation of CDK1.

Collaboration


Dive into the Guangbi Li's collaboration.

Top Co-Authors

Avatar

Pin-Lan Li

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Krishna M. Boini

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Min Xia

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Joseph K. Ritter

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sabena M. Conley

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Justine M. Abais

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Todd W.B. Gehr

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ashfaq Ahmad

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Aron H. Lichtman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jinni Hong

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge