Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangcun Deng is active.

Publication


Featured researches published by Guangcun Deng.


Molecular Immunology | 2014

microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection

Chunyan Ma; Yong Li; Min Li; Guangcun Deng; Xiaoling Wu; Jin Zeng; Xiujing Hao; Xiaoping Wang; Jing Liu; William C.S. Cho; Xiaoming Liu; Yujiong Wang

The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years; and the alveolar macrophages (AMs) are the main targets of mycobacterial infection, which play a pivotal role in the pathogenesis of Mycobacterium tuberculosis infection. However, the immunoregulatory role of miRNAs in AMs has not been fully demonstrated. In this study, we find that miR-124 is up-regulated in the peripheral leukocytes of patients with pulmonary tuberculosis; furthermore, the expression miR-124 can be induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in both RAW264.7 AM cells in vitro and murine AMs in vivo. Mechanistically, miR-124 is able to modulate toll-like receptor (TLR) signaling activity in RAW264.7 cells in response to BCG infection. In this regard, multiple components of TLR signaling cascade, including the TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α are directly targeted by miR-124. In addition, both overexpression of TLR signaling adaptor MyD88 and BCG infection are able to augment miR-124 transcription, while MyD88 expression silenced by small interfering RNA dramatically suppresses miR-124 expression in AMs in vitro. Moreover, the abundance of miR-124 transcript in murine AMs of MyD88 deficient mice is significantly less than that of their wild-type or heterozygous littermates; and the BCG infection fails to induce miR-124 expression in the lung of MyD88 deficient mouse. These results indicate a negative regulatory role of miR-124 in fine-tuning inflammatory response in AMs upon mycobacterial infection, in part through a mechanism by directly targeting TLR signaling.


International Journal of Molecular Sciences | 2014

A Caspase-Dependent Pathway Is Involved in Wnt/β-Catenin Signaling Promoted Apoptosis in Bacillus Calmette-Guerin Infected RAW264.7 Macrophages

Xiaoling Wu; Guangcun Deng; Xiujing Hao; Yong Li; Jin Zeng; Chunyan Ma; Yulong He; Xiaoming Liu; Yujiong Wang

Apoptosis of alveolar macrophages following Mycobacterium tuberculosis infection have been demonstrated to play a central role in the pathogenesis of tuberculosis. In the present study, we found that Wnt/β-catenin signaling possesses the potential to promote macrophage apoptosis in response to mycobacterial infection. In agreement with other findings, an activation Wnt/β-catenin signaling was observed in murine macrophage RAW264.7 cells upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection at a multiple-of-infection of 10, which was accompanied with up-regulation of pro-inflammatory cytokines TNF-α and IL-6 production. However, the BCG-induced TNF-α and IL-6 secretion could be significantly reduced when the cells were exposed to a canonical Wnt signaling ligand, Wnt3a. Importantly, the activation of Wnt/β-catenin signaling was able to further promote apoptosis in BCG-infected RAW264.7 cells in part by a mitochondria-dependent apoptosis pathway. Immunoblotting analysis further demonstrated that Wnt/β-catenin signaling-induced cell apoptosis partly through a caspase-dependent apoptosis mechanism by down-regulation of anti-apoptotic protein Mcl-1, and up-regulation of pro-apoptotic proteins Bax and cleaved-caspase-3, as well as enhancement of caspase-3 activity in BCG-infected RAW264.7 cells. These data may imply an underlying mechanism of alveolar macrophages in response to mycobacterial infection, by which the pathogen induces Wnt/β-catenin signaling activation, which in turn represses mycobacterium-trigged inflammatory responses and promotes mycobacteria-infected cell apoptosis.


Vaccine | 2011

Potential protective immunogenicity of recombinant Clostridium perfringens α–β2–β1 fusion toxin in mice, sows and cows

Jin Zeng; Guangcun Deng; Jing Wang; Jing Zhou; Xiaoming Liu; Qing Xie; Yujiong Wang

Clostridial toxins are main pathogenic virulence of Clostridium perfringens that have been associated with a wide range of diseases in both humans and domestic animals. Genetically engineered toxoids have been shown to function as potential vaccine candidates in the prevention of Clostridium derived infectious diseases. In this study, we have developed recombinant α-toxin (CPA), β2/β1-fusion toxin (CPB2B1) and α/β2/β1 trivalent fusion-toxin (CPAB2B1) as vaccine candidates that may be used to vaccinate against C. perfringens α, β1 and β2-toxins. Mice immunized with these recombinant toxoids demonstrated a strong protective immunological response when administered a lethal dose of C. perfringens type C culture filtrate with high titers of neutralizing antibodies to the toxins in the sera, as well as the intestinal mucosal s-IgA level. Specific neutralizing antibodies to the toxins were also detected in the sera and colostrum of sows and cows vaccinated with the toxoids. Furthermore, the CPA and CPB2B1 recombinant toxoid cocktail was capable of stimulating relatively higher levels of immune responses compared to that of CPA, CPB2B1 and CPAB2B1 alone. The CPAB2B1 trivalent fusion toxoid also displayed increased immunogenicity relative to CPA and CPB2B1 alone. These results suggest that recombinant toxoids are potential vaccine candidates against Clostridial toxins; the use of mixed cocktails and/or multivalent recombinant toxoids against different types of toxins may be an effective approach in the prevention of diseases caused by toxins produced by C. perfringens.


Tuberculosis Research and Treatment | 2012

Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection

Wu Li; Guangcun Deng; Min Li; Xiaoming Liu; Yujiong Wang

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is one of the worlds leading infectious causes of morbidity and mortality. As a mucosal-transmitted pathogen, Mtb infects humans and animals mainly through the mucosal tissue of the respiratory tract. Apart from providing a physical barrier against the invasion of pathogen, the major function of the respiratory mucosa may be to serve as the inductive sites to initiate mucosal immune responses and sequentially provide the first line of defense for the host to defend against this pathogen. A large body of studies in the animals and humans have demonstrated that the mucosal immune system, rather than the systemic immune system, plays fundamental roles in the hosts defense against Mtb infection. Therefore, the development of new vaccines and novel delivery routes capable of directly inducing respiratory mucosal immunity is emphasized for achieving enhanced protection from Mtb infection. In this paper, we outline the current state of knowledge regarding the mucosal immunity against Mtb infection, including the development of TB vaccines, and respiratory delivery routes to enhance mucosal immunity are discussed.


BMC Immunology | 2015

Wnt/β-catenin signaling reduces Bacillus Calmette-Guerin-induced macrophage necrosis through a ROS -mediated PARP/AIF-dependent pathway.

Xiaoling Wu; Guangcun Deng; Min Li; Yong Li; Chunyan Ma; Yujiong Wang; Xiaoming Liu

BackgroundNecrosis of alveolar macrophages following Mycobacterium tuberculosis infection has been demonstrated to play a vital role in the pathogenesis of tuberculosis. Our previous study demonstrated that Wnt/β-catenin signaling was able to promote mycobacteria-infected cell apoptosis by a caspase-dependent pathway. However, the functionality of this signaling in the necrosis of macrophage following mycobacterial infection remains largely unknown.MethodsMurine macrophage RAW264.7 cells were infected with Bacillus Calmette-Guerin (BCG) in the presence of Wnt/β-catenin signaling. The necrotic cell death was determined by cytometric assay and electronic microscopy; the productions of reactive oxygen species (ROS) and reduced glutathione (GSH) were measured by a cytometric analysis and an enzyme-linked immunosorbent assay, respectively; and the activity of poly (ADP-ribose) polymerase 1 (PARP-1)/apoptosis inhibition factor (AIF) signaling was examined by an immunoblotting assay.ResultsThe BCG can induce RAW264.7 macrophage cells necrosis in a dose- and time-dependent manner along with an accumulation of reactive oxygen species (ROS). Intriguingly, an enhancement of Wnt/β-catenin signaling shows an ability to reduce the mycobacteria-induced macrophage necrosis. Mechanistically, the activation of Wnt/β-catenin signaling is capable of inhibiting the necrotic cell death in BCG-infected RAW264.7 cells through a mechanism by which the Wnt signaling scavenges intracellular ROS accumulation and increases cellular GSH concentration. In addition, immunoblotting analysis further reveals that Wnt/β-catenin signaling is capable of inhibiting the ROS-mediated cell necrosis in part through a PARP-1/AIF- dependent pathway.ConclusionsAn activation of Wnt/β-catenin signaling can inhibit BCG-induced macrophage necrosis by increasing the production of GSH and scavenging ROS in part through a mechanism of repression of PARP-1/AIF signaling pathway. This finding may thus provide an insight into the underlying mechanism of alveolar macrophage cell death in response to mycobacterial infection.


Molecular Immunology | 2014

A recombinant adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis elicits strong antigen-specific immune responses in mice

Wu Li; Guangcun Deng; Min Li; Jin Zeng; Liping Zhao; Xiaoming Liu; Yujiong Wang

Tuberculosis (TB) is caused by an infection of Mycobacterium tuberculosis (Mtb) and remains an enormous and increasing health burden worldwide. To date, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the only licensed anti-TB vaccine worldwide, which provides an important but limited protection from the Mtb infection. The development of alternative anti-TB vaccines is therefore urgently needed. Here we report, the generation of Ad5-CEAB, a recombinant adenovirus expressing Mtb antigens of CFP10, ESAT6, Ag85A and Ag85B proteins in a form of mixture. In order to evaluate the immunogenicity of Ad5-CEAB, mice were immunized with Ad5-CEAB by intranasal instillation three times with 2-week intervals. The results demonstrated that Ad5-CEAB elicited a strong antigen-specific immune response, particularly of the Th1 immune responses that were characterized by an increased ratio of IgG2a/IgG1 and secretions of Th1 type cytokines, IFN-γ, TNF-α, IL-2 and IL-12. In addition, the Ad5-CEAB also showed an ability to enhance humoral responses with a dramatically augmented antigen-specific serum IgG. Furthermore, an elevated sIgA were also found in the bronchoalveolar lavage fluid of the immunized mice, suggesting the elicitation of mucosal immune responses. These data indicate that Ad5-CEAB can induce a broad range of antigen-specific immune responses in vivo, which provides a promising and novel route for developing anti-TB vaccines and warrants further investigation.


BMC Microbiology | 2016

Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway

Yanan Li; Zhongjia Jiang; Di Xue; Guangcun Deng; Min Li; Xiaoming Liu; Yujiong Wang

BackgroundMycoplasma ovipneumoniae (M. ovipneumoniae) is a species of Mycoplasma bacteria that specifically infects sheep and goat, causing ovine infectious pleuropneumonia. However, the mechanism underlying the pathogen-host interaction between M. ovipneumoniae and airway epithelial cells is unknown.MethodsA primary air-liquid interface (ALI) epithelial culture model generated from the bronchial epithelial cells of Ningxia Tan sheep (ovis aries) was employed to explore the potential mechanism of M. ovipneumoniae-induced cell apoptosis by characterizing the production of reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA) and anti-oxidative enzymes, as well as the mitochondrial membrane potentials, cytochrome C release, and activities of ERK and caspase signalling pathways.ResultsIncreased ROS production and MDA concentration with mitochondrial membrane dysfunction and apoptotic cell death but decreased expression of the antioxidant enzymes catalase (CAT), glutathione synthetase (GSS), total superoxide dismutaes (T-SOD) and Mn-SOD were observed in sheep airway epithelial cells infected with M. ovipneumoniae. Mechanistically, the M. ovipneumoniae-induced cell apoptosis and disruption of mitochondrial integrity reflected mechanisms by which pathogen-activated mitogen-activated protein kinase (MAPK) signalling sequentially led to mitochondrial damage and release of Cyt-C into the cytoplasm, which in turn triggered the activation of caspase signalling cascade, resulting in the apoptosis of host cells.ConclusionsThese results suggest that M. ovipneumoniae-induced ROS and MAPK signalling-mediated mitochondrial apoptotic pathways might play key roles in the pathogenesis of M. ovipneumoniae infection in sheep lungs.


Molecular Immunology | 2015

Immunogenicity and protective efficacy of a recombinant adenoviral based vaccine expressing heat-stable enterotoxin (STa) and K99 adhesion antigen of enterotoxigenic Escherichia coli in mice

Guangcun Deng; Wu Li; Xiaoling Wu; Shaowen Bao; Jin Zeng; Ning Zhao; Meihui Luo; Xiaoming Liu; Yujiong Wang

The diarrheal disease of domestic animals or in humans caused by enterotoxigenic Escherichia coli (ETEC) infections remains a major issue for public health in developing countries. Unfortunately, there is no effective vaccine available for preventing from an ETEC infection. Therefore, the development of a safe and effective vaccine against ETEC is urgently needed. In the present study, A recombinant adenoviral vector Ad5-STa-K99 that capable of expressing a fusion protein of heat-stable enterotoxin (STa) and K99 adhesion antigen of ETEC was generated and its immunogenicity was evaluated in a murine model. The intestinal mucosal secretory IgA(sIgA), serum anti-STa-K99 antibody responses, antigen-specific CD4(+) and CD8(+) T cells frequencies, as well as T-cell proliferation of mice immunized with the viral vector were determined as immunological indexes. The results demonstrated that Ad5-STa-K99 was able to enhance humoral responses with a dramatically augmented antigen-specific serum IgG antibody, and an elevated production of intestinal sIgA in immunized mice, suggesting the elicitation of both of humoral and mucosal immune responses. In addition, this adenoviral vector could significantly promote splenic T cell proliferation and increase the frequencies of CD4(+) and CD8(+) T cell populations in mice, indicative of a capacity to activate T cell responses. More importantly, vaccination of the Ad5-STa-K99 showed a potential to evoke a protective effect from ETEC challenge in mice. These data indicate that the Ad5-STa-K99 is a highly immunogenic vector able to induce a broad range of antigen-specific immune responses in vivo, and evoke a protective immune response against ETEC infections, implying that it may be a novel vaccine candidate warranted for further investigation.


Clinical & Developmental Immunology | 2016

The Generation and Characterization of Recombinant Protein and Antibodies of Clostridium perfringens Beta2 Toxin.

Jin Zeng; Fuyang Song; Yi Yang; Chenjie Ma; Guangcun Deng; Yong Li; Yujiong Wang; Xiaoming Liu

Introduction. Clostridium perfringens (C. perfringens) beta2 toxin (CPB2) is an important virulent factor of necrotic enteritis in both animals and humans. However, studies of its pathogenic roles and functional mechanisms have been hampered due to the difficulty of purification and lack of specific antibodies against this toxin. Methods. A recombinant His-tagged C. perfringens beta2 (rCPB2) toxin and monoclonal antibodies (McAbs) against CPB2 were generated and characterized by assays of cytotoxicity, immunoblotting, ELISA, neutralization, and immunofluorescence. Results. A His-tagged rCPB2 with integrity and cytotoxicity of native CPB2 was purified from E. coli expressing system, which exhibited a moderate cytotoxicity on NCM460 human intestinal epithelial cells. The rCPB2 could induce apoptotic cell death rather than necrotic death in part through a pathway involved in caspase-3 signaling. Mechanistically, rCPB2 was able to first bind to cell membrane and dynamically translocate into cytoplasm for its cytotoxic activity. Three McAbs 1E23, 2G7 and 2H7 were characterized to be able to immunologically react with CPB2 and neutralize rCPB2 cytotoxicity on NCM460 cells. Conclusion. These results indicated the rCPB2 and antibodies generated in this study are useful tools for studies of biological functions and pathogenic mechanisms of CPB2 in future, which warrants for further investigations.


Molecular Medicine Reports | 2015

Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice

Wu Li; Min Li; Guangcun Deng; Liping Zhao; Xiaoming Liu; Yujiong Wang

Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection.

Collaboration


Dive into the Guangcun Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge