Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujiong Wang is active.

Publication


Featured researches published by Yujiong Wang.


Clinical & Developmental Immunology | 2012

The Role of Airway Epithelial Cells in Response to Mycobacteria Infection

Yong Li; Yujiong Wang; Xiaoming Liu

Airway epithelial cells (AECs) are part of the frontline defense against infection of pathogens by providing both a physical barrier and immunological function. The role of AECs in the innate and adaptive immune responses, through the production of antimicrobial molecules and proinflammatory factors against a variety of pathogens, has been well established. Tuberculosis (TB), a contagious disease primarily affecting the lungs, is caused by the infection of various strains of mycobacteria. In response to mycobacteria infection, epithelial expression of Toll-like receptors and surfactant proteins plays the most prominent roles in the recognition and binding of the pathogen, as well as the initiation of the immune response. Moreover, the antimicrobial substances, proinflammatory factors secreted by AECs, composed a major part of the innate immune response and mediation of adaptive immunity against the pathogen. Thus, a better understanding of the role and mechanism of AECs in response to mycobacteria will provide insight into the relationship of epithelial cells and lung immunocytes against TB, which may facilitate our understanding of the pathogenesis and immunological mechanism of pulmonary tuberculosis disease.


Gene Therapy | 2007

Comparative biology of rAAV transduction in ferret, pig and human airway epithelia.

Xiaoming Liu; Meihui Luo; Chenhong Guo; Ziying Yan; Yujiong Wang; John F. Engelhardt

Differences between rodent and human airway cell biology have made it difficult to translate recombinant adeno-associated virus (rAAV)-mediated gene therapies to the lung for cystic fibrosis (CF). As new ferret and pig models for CF become available, knowledge about host cell/vector interactions in these species will become increasingly important for testing potential gene therapies. To this end, we have compared the transduction biology of three rAAV serotypes (AAV1, 2 and 5) in human, ferret, pig and mouse-polarized airway epithelia. Our results indicate that apical transduction of ferret and pig airway epithelia with these rAAV serotypes closely mirrors that observed in human epithelia (rAAV1>rAAV2≅rAAV5), while transduction of mouse epithelia was significantly different (rAAV1>rAAV5≫rAAV2). Similarly, ferret, pig and human epithelia also shared serotype-specific differences in the polarity (apical vs basolateral) and proteasome dependence of rAAV transduction. Despite these parallels, N-linked sialic acid receptors were required for rAAV1 and rAAV5 transduction of human and mouse airway epithelia, but not ferret or pig airway epithelia. Hence, although the airway tropisms of rAAV serotypes 1, 2 and 5 are conserved better among ferret, pig and human as compared to mouse, viral receptors/co-receptors appear to maintain considerable species diversity.


Molecular Therapy | 2009

Analysis of Adeno-associated Virus Progenitor Cell Transduction in Mouse Lung

Xiaoming Liu; Meihui Luo; Chenhong Guo; Ziying Yan; Yujiong Wang; Diana C.M. Lei-Butters; John F. Engelhardt

Although recombinant adeno-associated virus (rAAV) has been widely used in lung gene therapy approaches, it remains unclear to what extent commonly used AAV serotypes transduce adult progenitors in the lung. In this study, we evaluated the life span and proliferative capacity of rAAV1-, 2-, and 5-transduced airway cells in mouse lung, using a LacZ-CRE reporter transgenic model and Cre-expressing rAAV. In this model, the expression of CRE recombinase led to permanent genetic marking of transduced cells and their descendants with LacZ. To investigate whether the rAAV-transduced cells included airway progenitors, we injured the airways of rAAV-infected mice with Naphthalene, while simultaneously labeling with 5-bromodeoxyuridine (BrdU) to identify slow-cycling progenitor/stem cells that entered the cell cycle and retained label. Both rAAV5 and rAAV1 vectors were capable of transducing a subset of long-lived Clara cells and alveolar type II (ATII) cells that retained nucleotide label and proliferated following lung injury. Importantly, rAAV1 and 5 appeared to preferentially transduce conducting airway epithelial progenitors that had the capacity to clonally expand, both in culture and in vivo following lung injury. These studies suggest that rAAV may be a useful vector for gene targeting of airway stem/progenitor cells.


Molecular Immunology | 2014

microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection

Chunyan Ma; Yong Li; Min Li; Guangcun Deng; Xiaoling Wu; Jin Zeng; Xiujing Hao; Xiaoping Wang; Jing Liu; William C.S. Cho; Xiaoming Liu; Yujiong Wang

The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years; and the alveolar macrophages (AMs) are the main targets of mycobacterial infection, which play a pivotal role in the pathogenesis of Mycobacterium tuberculosis infection. However, the immunoregulatory role of miRNAs in AMs has not been fully demonstrated. In this study, we find that miR-124 is up-regulated in the peripheral leukocytes of patients with pulmonary tuberculosis; furthermore, the expression miR-124 can be induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in both RAW264.7 AM cells in vitro and murine AMs in vivo. Mechanistically, miR-124 is able to modulate toll-like receptor (TLR) signaling activity in RAW264.7 cells in response to BCG infection. In this regard, multiple components of TLR signaling cascade, including the TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α are directly targeted by miR-124. In addition, both overexpression of TLR signaling adaptor MyD88 and BCG infection are able to augment miR-124 transcription, while MyD88 expression silenced by small interfering RNA dramatically suppresses miR-124 expression in AMs in vitro. Moreover, the abundance of miR-124 transcript in murine AMs of MyD88 deficient mice is significantly less than that of their wild-type or heterozygous littermates; and the BCG infection fails to induce miR-124 expression in the lung of MyD88 deficient mouse. These results indicate a negative regulatory role of miR-124 in fine-tuning inflammatory response in AMs upon mycobacterial infection, in part through a mechanism by directly targeting TLR signaling.


International Journal of Molecular Sciences | 2014

A Caspase-Dependent Pathway Is Involved in Wnt/β-Catenin Signaling Promoted Apoptosis in Bacillus Calmette-Guerin Infected RAW264.7 Macrophages

Xiaoling Wu; Guangcun Deng; Xiujing Hao; Yong Li; Jin Zeng; Chunyan Ma; Yulong He; Xiaoming Liu; Yujiong Wang

Apoptosis of alveolar macrophages following Mycobacterium tuberculosis infection have been demonstrated to play a central role in the pathogenesis of tuberculosis. In the present study, we found that Wnt/β-catenin signaling possesses the potential to promote macrophage apoptosis in response to mycobacterial infection. In agreement with other findings, an activation Wnt/β-catenin signaling was observed in murine macrophage RAW264.7 cells upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection at a multiple-of-infection of 10, which was accompanied with up-regulation of pro-inflammatory cytokines TNF-α and IL-6 production. However, the BCG-induced TNF-α and IL-6 secretion could be significantly reduced when the cells were exposed to a canonical Wnt signaling ligand, Wnt3a. Importantly, the activation of Wnt/β-catenin signaling was able to further promote apoptosis in BCG-infected RAW264.7 cells in part by a mitochondria-dependent apoptosis pathway. Immunoblotting analysis further demonstrated that Wnt/β-catenin signaling-induced cell apoptosis partly through a caspase-dependent apoptosis mechanism by down-regulation of anti-apoptotic protein Mcl-1, and up-regulation of pro-apoptotic proteins Bax and cleaved-caspase-3, as well as enhancement of caspase-3 activity in BCG-infected RAW264.7 cells. These data may imply an underlying mechanism of alveolar macrophages in response to mycobacterial infection, by which the pathogen induces Wnt/β-catenin signaling activation, which in turn represses mycobacterium-trigged inflammatory responses and promotes mycobacteria-infected cell apoptosis.


Molecular Immunology | 2014

A Wnt/β-catenin negative feedback loop represses TLR-triggered inflammatory responses in alveolar epithelial cells.

Yong Li; Juan Shi; Jiali Yang; Yan Ma; Long Cheng; Jin Zeng; Xiujing Hao; Chunyan Ma; Yujiong Wang; Xiaoming Liu

Increasing evidence has demonstrated that the epithelial cells in the lung play crucial roles in regulating certain inflammatory responses by modulating Wnt signaling during microbial infection. However, the anti-microbial functions of Wnt signaling in alveolar epithelial cells remain elusive. In this report, we show that Wnt/β-catenin signaling is repressed in A549 alveolar epithelial cells during a Toll-like receptor ligand stimulation with Mycobacterium bovis Bacillus Calmette-Guerin (BCG) or lipopolysaccharide (LPS). In addition to activating TLR signaling, a stimulation of BCG or LPS led to the up-regulation of a Wnt receptor Frizzled-1, cytosolic GSK3β and Axin, and the down-regulation of nuclear β-catenin, lymphoid enhancer factor 1 and transcription factor 4. While an enhancement of β-catenin activity suppressed the TLR signal response, and substantially led to alleviate the TLR ligand-induced pro-inflammatory responses. Importantly, gain and loss of function studies by overexpressing or silencing of TLR signaling adaptor, myeloid differentiation primary response gene 88 (MyD88) further demonstrated an inverse relationship between TLR signaling and canonical Wnt signaling in A549 cells. These data imply that Wnt/β-catenin signaling acts as a negative feedback loop to suppress inflammation in alveolar epithelial cells, and averts cell injury from excessive inflammatory reactions. This study thus reveals a novel immunoregulatory mechanism in alveolar epithelial cells in response to bacterial infection.


Vaccine | 2011

Potential protective immunogenicity of recombinant Clostridium perfringens α–β2–β1 fusion toxin in mice, sows and cows

Jin Zeng; Guangcun Deng; Jing Wang; Jing Zhou; Xiaoming Liu; Qing Xie; Yujiong Wang

Clostridial toxins are main pathogenic virulence of Clostridium perfringens that have been associated with a wide range of diseases in both humans and domestic animals. Genetically engineered toxoids have been shown to function as potential vaccine candidates in the prevention of Clostridium derived infectious diseases. In this study, we have developed recombinant α-toxin (CPA), β2/β1-fusion toxin (CPB2B1) and α/β2/β1 trivalent fusion-toxin (CPAB2B1) as vaccine candidates that may be used to vaccinate against C. perfringens α, β1 and β2-toxins. Mice immunized with these recombinant toxoids demonstrated a strong protective immunological response when administered a lethal dose of C. perfringens type C culture filtrate with high titers of neutralizing antibodies to the toxins in the sera, as well as the intestinal mucosal s-IgA level. Specific neutralizing antibodies to the toxins were also detected in the sera and colostrum of sows and cows vaccinated with the toxoids. Furthermore, the CPA and CPB2B1 recombinant toxoid cocktail was capable of stimulating relatively higher levels of immune responses compared to that of CPA, CPB2B1 and CPAB2B1 alone. The CPAB2B1 trivalent fusion toxoid also displayed increased immunogenicity relative to CPA and CPB2B1 alone. These results suggest that recombinant toxoids are potential vaccine candidates against Clostridial toxins; the use of mixed cocktails and/or multivalent recombinant toxoids against different types of toxins may be an effective approach in the prevention of diseases caused by toxins produced by C. perfringens.


Current Cancer Drug Targets | 2013

Genetic and Epigenetic Studies for Determining Molecular Targets of Natural Product Anticancer Agents

Yujiong Wang; Yong Li; Xiaoming Liu; William C. Cho

Cancer is a disease caused by a series of genetic and epigenetic alterations. Therefore, agents targeting the genetic and/or epigenetic machinery offer potential for the development of anticancer drugs. Accumulating evidence has demonstrated that some common natural products [such as epigallocatechin-3-gallate (EGCG), curcumin, genistein, sulforaphane (SFN) and resveratrol] have anticancer properties through the mechanisms of altering epigenetic processes [including DNA methylation, histone modification, chromatin remodeling, microRNA (miRNA) regulation] and targeting cancer stem cells (CSCs). These bioactive compounds are able to revert epigenetic alterations in a variety of cancers in vitro and in vivo. They exert anticancer effects by targeting various signaling pathways related to the initiation, progression and metastasis of cancer. It appears that natural products hold great promise for cancer prevention and treatment by altering various epigenetic modifications. This review aims to discuss our current understanding of genetic and epigenetic targets of natural products and the effects of some common natural products on cancer chemoprevention and treatment.


Cell Biology and Toxicology | 2011

Selective suppression of cervical cancer Hela cells by 2-O-β-d-glucopyranosyl-l-ascorbic acid isolated from the fruit of Lycium barbarum L.

Zhiping Zhang; Xiaoming Liu; Tao Wu; Junhong Liu; Xu Zhang; Xueyun Yang; Michael J. Goodheart; John F. Engelhardt; Yujiong Wang

Lycium barbarum fruit has been used as a Chinese traditional medicine and dietary supplement for centuries. 2-O-β-d-Glucopyranosyl-l-ascorbic acid (AA-2βG), a novel stable vitamin C analog, is one of the main biologically active components of the fruit. In this report, we investigated the cytotoxic and antiproliferative effect of AA-2βG against cancer cells in vitro and identified the proteins with significantly differential expression in the cervical cancer cells (Hela) cultured in the presence of AA-2βG proteomic analysis. Our results demonstrated that the cytotoxic and antiproliferative activity of AA-2βG on cancer cell lines were in a cell type-, time-, and dose-dependent manner. Similar to vitamin C, the AA-2βG selectively induced cell death repressed the proliferation of Hela cells by the mechanism of cell apoptosis and cell cycle arrest induced by AA-2βG through a mechanism of stabilizing p53 protein. However, the biological activity of inhibition of cell proliferation in other malignant cancer cell lines or primary cells were varied, as demonstrated by either moderate inhibition or slight promotion following treatment with AA-2βG. Comparative analysis of the proteomic profiles and immunoblot analysis identified 15 proteins associated with repressing cell apoptosis and/or stimulating cell proliferation in Hela cells that were downregulated in the presence of AA-2βG or vitamin C. These data indicate that a mechanism of the AA-2βG and vitamin C mediated antitumor activity by downregulating the expression of proteins involved in cell apoptosis and proliferation and consequently inducing Hela cell apoptosis and cell cycle arrest, suggesting that AA-2βG and vitamin C may share a similar mechanism of inducing Hela cell apoptosis. These results also suggest that the L. barbarum fruit may be a potential dietary supplement and anticancer agent aimed at the prevention and treatment of cervical cancer.


Journal of Biological Chemistry | 2012

Comparative processing and function of human and ferret cystic fibrosis transmembrane conductance regulator.

John T. Fisher; Xiaoming Liu; Ziying Yan; Meihui Luo; Yulong Zhang; Weihong Zhou; Ben J. Lee; Yi Song; Chenhong Guo; Yujiong Wang; Gergely L. Lukacs; John F. Engelhardt

Background: Species-specific differences in WT- and ΔF508-CFTR biology exist. Results: Ferret WT-CFTR displays enhanced maturation efficiency and post-Golgi stability relative to human. Ferret ΔF508-CFTR maturation was greater than human in certain cell lines; both orthologs lacked function in airway epithelia. Conclusion: Ferret and human CFTR have unique differences in processing and stability. Significance: Generation of a ΔF508-CFTR ferret animal model may be useful. The most common cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation is ΔF508, and this causes cystic fibrosis (CF). New CF models in the pig and ferret have been generated that develop lung, pancreatic, liver, and intestinal pathologies that reflect disease in CF patients. Species-specific biology in the processing of CFTR has demonstrated that pig and mouse ΔF508-CFTR proteins are more effectively processed to the apical membrane of airway epithelia than human ΔF508-CFTR. The processing behavior of ferret WT- and ΔF508-CFTR proteins remains unknown, and such information is important to predicting the utility of a ΔF508-CFTR ferret. To this end, we sought to compare processing, membrane stability, and function of human and ferret WT- and ΔF508-CFTR proteins in a heterologous expression system using HT1080, HEK293T, BHK21, and Cos7 cells as well as human and ferret CF polarized airway epithelia. Analysis of the protein processing and stability by metabolic pulse-chase and surface On-Cell Western blots revealed that WT-fCFTR half-life and membrane stability were increased relative to WT-hCFTR. Furthermore, in BHK21, Cos7, and CuFi cells, human and ferret ΔF508-CFTR processing was negligible, whereas low levels of processing of ΔF508-fCFTR could be seen in HT1080 and HEK293T cells. Only the WT-fCFTR, but not ΔF508-fCFTR, produced functional cAMP-inducible chloride currents in both CF human and ferret airway epithelia. Further elucidation of the mechanism responsible for elevated fCFTR protein stability may lead to new therapeutic approaches to augment CFTR function. These findings also suggest that generation of a ferret CFTRΔF508/ΔF508 animal model may be useful.

Collaboration


Dive into the Yujiong Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge