Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanghe Li is active.

Publication


Featured researches published by Guanghe Li.


The ISME Journal | 2011

Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

Yuting Liang; Joy D. Van Nostrand; Ye Deng; Zhili He; Liyou Wu; Xu Zhang; Guanghe Li; Jizhong Zhou

To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.


Applied and Environmental Microbiology | 2010

Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities.

Yuting Liang; Zhili He; Liyou Wu; Ye Deng; Guanghe Li; Jizhong Zhou

ABSTRACT High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e.g., genomic DNA) for the study of pure cultures are not applicable. In this study, we developed a common oligonucleotide reference standard (CORS) method to address this problem. A unique 50-mer reference oligonucleotide probe was selected to co-spot with gene probes for each array feature. The complementary sequence was synthesized and labeled for use as the reference target, which was then spiked and cohybridized with each sample. The signal intensity of this reference target was used for microarray data normalization and comparison. The optimal amount or concentration were determined to be ca. 0.5 to 2.5% of a gene probe for the reference probe and ca. 0.25 to 1.25 fmol/μl for the reference target based on our evaluation with a pilot array. The CORS method was then compared to dye swap and genomic DNA normalization methods using the Desulfovibrio vulgaris whole-genome microarray, and significant linear correlations were observed. This method was then applied to a functional gene array to analyze soil microbial communities, and the results demonstrated that the variation of signal intensities among replicates based on the CORS method was significantly lower than the total intensity normalization method. The developed CORS provides a useful approach for microarray data normalization and comparison for studies of complex microbial communities.


FEMS Microbiology Ecology | 2009

Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field

Yuting Liang; Guanghe Li; Joy D. Van Nostrand; Zhili He; Liyou Wu; Ye Deng; Xu Zhang; Jizhong Zhou

To understand better the in situ microbial functional diversity under oil contamination stress, soils were sampled along a contamination gradient at an oil field in north-east China. Microbial community functional structure was examined with a functional gene array, termed GeoChip. Multivariate statistical analysis and meta-analysis were conducted to study the functional gene responses to oil concentrations. The total functional gene abundance and diversity decreased along the gradient of increasing contamination. The overall abundance of soil bacteria, archaea and fungi decreased to 10%, 40% and 80% of those in the pristine soil. Several functional genes in the families pgl, rbcL, nifH and nor and those encoding cellulase, laccase, chitinase, urease and key enzymes in metabolizing organic compounds were significantly decreased with oil contamination, especially under high contamination stress. However, a few genes encoding key enzymes for catechol, protocatechuate, and biphenyl degradation and in the gene families of nir, rbcL and pgl showed a significant increase at a medium level of oil contamination. Oil content and soil available nitrogen were found to be important factors influencing the microbial community structure. The results provide an insight into microbial functional diversity in oil-contaminated soils, providing potential information for on-site management and remediation measures.


Microbial Biotechnology | 2011

Functionalization of whole-cell bacterial reporters with magnetic nanoparticles

Dayi Zhang; Rawil F. Fakhrullin; Mustafa Ozmen; Hui Wang; Jian Wang; Vesselin N. Paunov; Guanghe Li; Wei E. Huang

We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment.


Chemosphere | 2009

Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil

Yuting Liang; Joy D. Van Nostrand; Jian Wang; Xu Zhang; Jizhong Zhou; Guanghe Li

Ozonation with a subsequent biodegradation treatment was performed to remove recalcitrant organic compounds from long-term weathered crude oil contaminated soil. Samples were analyzed by GC/MS and column chromatography to monitor changes in crude oil composition. A functional gene array was used to examine microbial community dynamics. After a 6h ozonation treatment with a constant concentration of 10mgO(3)L(-1) at a flow rate of 2.0Lmin(-1), an average removal of crude oil was 22%. The concentration of long-chain n-alkanes (C(19)-C(28)) decreased while more biodegradable short-chain alkanes (C(14)-C(16)), n-aldehydes (C(13)-C(20)), and n-monocarboxylic acids (C(9)-C(20)) appeared. In the subsequent direct biodegradation and bioaugmentation, an additional 12-20% of residuals were removed. The total microbial functional gene numbers and overall genetic diversity decreased after ozonation. Also, most of the key functional genes pertaining to carbon, nitrogen, and sulfur cycling and organic contaminant degradation decreased, ranging from 20% to below the detection limit. However, in the subsequent biodegradation treatments, with and without bioaugmentation, the abundance of key genes in most functional groups recovered. This study provided insight into changes in crude oil composition and microbial functional genes responses during ozonation and bioremediation treatments. These changes demonstrate the feasibility of an integrated ozonation and biodegradation treatment to remove recalcitrant soil contaminants.


Environmental Science & Technology | 2009

Optimization of Bacterial Whole Cell Bioreporters for Toxicity Assay of Environmental Samples

Yizhi Song; Guanghe Li; Steven F. Thornton; Ian P. Thompson; Steven A. Banwart; David N. Lerner; Wei E. Huang

In a study to optimize bacterial whole cell biosensors (bioreporters) for the detection of environmental contaminants, we constructed a toxicity sensing strain Acinetobacter baylyi ADP1_recA_lux. The ADP1_recA_lux is a chromosomally based bioreporter which makes the sensing system stable and negates the need for antibiotics to maintain the trait. The AOP1_recA_lux is activated to express bioluminescence when it is exposed to DNA damaging toxicants. Since the ADP1_recA_lux constantly expresses a baseline level of bioluminescence, false negative results are avoided. The host strain, A. baylyi ADP1, is an ideal model strain typical of water and soil bacteria occurring in the natural environment, and it is more robust than E. coli in terms of viability, maintenance, and storage. The expression of reporter genes - luxCDABE cloned from Photorhabdus luminescens - is robust in a broad range of temperature (10-40 degrees C). The ADP1_recA_lux was used to detect a variety of toxic or potentially toxic compounds including mitomycin C (MMC), methyl methanesulfonate, ethidium bromide, H2O2, toluene, single-wall nanocarbon tubes (SWNCT), nano Au colloids (20 nm), pyrene, beno[a]pyrene, and UV light. These exposures revealed that the ADP1_recA_lux was able to detect both genotoxicity and cytoxicity, qualitatively and quantitatively. The optimal induction time of the ADP1_recA_lux bioreporter was 3 h, and the detection limits for MMC and benezo[a]pyrene were 1.5 nM and 0.4 nM, respectively. The ADP1_recA_lux was also used to detect toxicity of groundwater contaminated by a mixture of phenolic compounds, and the bioreporter toxicity detection was in a good agreement with chemical analysis. The optimized whole cell bioreporter ADP1_recA_lux could be valuable in providing a simple, rapid, stable, quantitative, robust, and costly efficient approach for the detection of toxicity in environmental samples.


Nucleic Acids Research | 2007

Ultrasound-mediated DNA transfer for bacteria.

Yizhi Song; Thomas Hahn; Ian P. Thompson; Timothy J. Mason; Gail M. Preston; Guanghe Li; Larysa Paniwnyk; Wei E. Huang

In environmental microbiology, the most commonly used methods of bacterial DNA transfer are conjugation and electroporation. However, conjugation requires physical contact and cell–pilus–cell interactions; electroporation requires low-ionic strength medium and high voltage. These limitations have hampered broad applications of bacterial DNA delivery. We have employed a standard low frequency 40 kHz ultrasound bath to successfully transfer plasmid pBBR1MCS2 into Pseudomonas putida UWC1, Escherichia coli DH5α and Pseudomonas fluorescens SBW25 with high efficiency. Under optimal conditions: ultrasound exposure time of 10 s, 50 mM CaCl2, temperature of 22°C, plasmid concentration of 0.8 ng/µl, P. putida UWC1 cell concentration of 2.5 × 109 CFU (colony forming unit)/ml and reaction volume of 500 µl, the efficiency of ultrasound DNA delivery (UDD) was 9.8 ± 2.3 × 10−6 transformants per cell, which was nine times more efficient than conjugation, and even four times greater than electroporation. We have also transferred pBBR1MCS2 into E. coli DH5α and P. fluorescens SBW25 with efficiencies of 1.16 ± 0.13 × 10−6 and 4.33 ± 0.78 × 10−6 transformants per cell, respectively. Low frequency UDD can be readily scaled up, allowing for the application of UDD not only in laboratory conditions but also on an industrial scale.


Applied and Environmental Microbiology | 2012

Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

Yuting Liang; Joy D. Van Nostrand; Lucie A. N′Guessan; Aaron D. Peacock; Ye Deng; Philip E. Long; C. Tom Resch; Liyou Wu; Zhili He; Guanghe Li; Terry C. Hazen; Derek R. Lovley; Jizhong Zhou

ABSTRACT To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.


The ISME Journal | 2015

Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community

Dayi Zhang; James P Berry; Di Zhu; Yun Wang; Yin Chen; Bo Jiang; Shi Huang; Harry Langford; Guanghe Li; Paul A. Davison; Jian Xu; Eric Aries; Wei E. Huang

Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders—Rhodococcus sp., Chryseobacterium sp. and three different Pseudomonas spp.—were also isolated from the same biosludge using traditional methods. The kinetics of phenol degradation by MMI-recovered cells (MRCs) was similar to that of the original sludge. Stable isotope probing (SIP) and pyrosequencing of the 16S rRNA from the ‘heavy’ DNA (13C-DNA) fractions indicated that Burkholderiales spp. were the key phenol degraders in situ in the biosludge, consistent with the results of MRCs. Single-cell Raman micro-spectroscopy was applied to probe individual bacteria in the MRCs obtained from the SIP experiment and showed that 79% of them were fully 13C-labelled. Biolog assays on the MRCs revealed the impact of various carbon and nitrogen substrates on the efficiency of phenol degradation in the wastewater treatment plant biosludge. Specifically, hydroxylamine, a metabolite of ammonia oxidisation, but not nitrite, nitrate or ammonia, inhibited phenol degradation in the biosludge. Our results provided a novel insight into the occasional abrupt failure events that occur in the wastewater treatment plant. This study demonstrated that MMI is a powerful tool to recover live and functional cells in situ from a complex microbial community to enable further characterisation of their physiology.


Environmental Pollution | 2010

Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies.

Shuxiao Wang; J.X. Song; Guanghe Li; Ye Wu; Lixun Zhang; Q. Wan; David G. Streets; Conrad K. Chin; J. M. Hao

Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t(-1) of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting.

Collaboration


Dive into the Guanghe Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuting Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge