Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuting Liang is active.

Publication


Featured researches published by Yuting Liang.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Stochasticity, succession, and environmental perturbations in a fluidic ecosystem

Jizhong Zhou; Ye Deng; Ping Zhang; Kai Xue; Yuting Liang; Joy D. Van Nostrand; Yunfeng Yang; Zhili He; Liyou Wu; David A. Stahl; Terry C. Hazen; James M. Tiedje; Adam P. Arkin

Significance The study of ecological succession remains at the core of ecology. Understanding the trajectories and mechanisms controlling ecological succession is crucial to predicting the responses of ecosystems to environmental change and projecting their future states. By definition, deterministic succession is expected under homogeneous abiotic and biotic starting conditions. This study, however, shows that the succession of groundwater microbial communities in response to nutrient amendment is primarily stochastic, but that the drivers controlling biodiversity and succession are dynamic rather than static. By identifying the mechanisms controlling microbial community assembly and succession, this study makes fundamental contribution to the mechanistic understanding essential for a predictive microbial ecology of many systems ranging from microbiomes of humans and plants to natural and managed ecosystems. Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.


The ISME Journal | 2011

Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

Yuting Liang; Joy D. Van Nostrand; Ye Deng; Zhili He; Liyou Wu; Xu Zhang; Guanghe Li; Jizhong Zhou

To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.


FEMS Microbiology Ecology | 2012

Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin

Boris Wawrik; Margarita Mendivelso; Victoria A. Parisi; Joseph M. Suflita; Irene A. Davidova; Christopher R. Marks; Joy D. Van Nostrand; Yuting Liang; Jizhong Zhou; Brad J. Huizinga; Dariusz Strąpoć; Amy V. Callaghan

The bioconversion of coal to methane in the San Juan Basin, New Mexico, was investigated. Production waters were analyzed via enrichment studies, metabolite-profiling, and culture-independent methods. Analysis of 16S rRNA gene sequences indicated the presence of methanogens potentially capable of acetoclastic, hydrogenotrophic, and methylotrophic metabolisms, predominantly belonging to the Methanosarcinales and Methanomicrobiales. Incubations of produced water and coal readily produced methane, but there was no correlation between the thermal maturity and methanogenesis. Coal methanogenesis was greater when samples with a greater richness of Firmicutes were utilized. A greater archaeal diversity was observed in the presence of several aromatic and short-chain fatty acid metabolites. Incubations amended with lactate, hydrogen, formate, and short-chain alcohols produced methane above un-amended controls. Methanogenesis from acetate was not observed. Metabolite profiling showed the widespread occurrence of putative aromatic ring intermediates including benzoate, toluic acids, phthalic acids, and cresols. The detection of saturated and unsaturated alkylsuccinic acids indicated n-alkane and cyclic alkane/alkene metabolism. Microarray analysis complemented observations based on hybridization to functional genes related to the anaerobic metabolism of aromatic and aliphatic substrates. These data suggest that coal methanogenesis is unlikely to be limited by methanogen biomass, but rather the activation and degradation of coal constituents.


Applied and Environmental Microbiology | 2010

Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities.

Yuting Liang; Zhili He; Liyou Wu; Ye Deng; Guanghe Li; Jizhong Zhou

ABSTRACT High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e.g., genomic DNA) for the study of pure cultures are not applicable. In this study, we developed a common oligonucleotide reference standard (CORS) method to address this problem. A unique 50-mer reference oligonucleotide probe was selected to co-spot with gene probes for each array feature. The complementary sequence was synthesized and labeled for use as the reference target, which was then spiked and cohybridized with each sample. The signal intensity of this reference target was used for microarray data normalization and comparison. The optimal amount or concentration were determined to be ca. 0.5 to 2.5% of a gene probe for the reference probe and ca. 0.25 to 1.25 fmol/μl for the reference target based on our evaluation with a pilot array. The CORS method was then compared to dye swap and genomic DNA normalization methods using the Desulfovibrio vulgaris whole-genome microarray, and significant linear correlations were observed. This method was then applied to a functional gene array to analyze soil microbial communities, and the results demonstrated that the variation of signal intensities among replicates based on the CORS method was significantly lower than the total intensity normalization method. The developed CORS provides a useful approach for microarray data normalization and comparison for studies of complex microbial communities.


FEMS Microbiology Ecology | 2009

Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field

Yuting Liang; Guanghe Li; Joy D. Van Nostrand; Zhili He; Liyou Wu; Ye Deng; Xu Zhang; Jizhong Zhou

To understand better the in situ microbial functional diversity under oil contamination stress, soils were sampled along a contamination gradient at an oil field in north-east China. Microbial community functional structure was examined with a functional gene array, termed GeoChip. Multivariate statistical analysis and meta-analysis were conducted to study the functional gene responses to oil concentrations. The total functional gene abundance and diversity decreased along the gradient of increasing contamination. The overall abundance of soil bacteria, archaea and fungi decreased to 10%, 40% and 80% of those in the pristine soil. Several functional genes in the families pgl, rbcL, nifH and nor and those encoding cellulase, laccase, chitinase, urease and key enzymes in metabolizing organic compounds were significantly decreased with oil contamination, especially under high contamination stress. However, a few genes encoding key enzymes for catechol, protocatechuate, and biphenyl degradation and in the gene families of nir, rbcL and pgl showed a significant increase at a medium level of oil contamination. Oil content and soil available nitrogen were found to be important factors influencing the microbial community structure. The results provide an insight into microbial functional diversity in oil-contaminated soils, providing potential information for on-site management and remediation measures.


Chemosphere | 2009

Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil

Yuting Liang; Joy D. Van Nostrand; Jian Wang; Xu Zhang; Jizhong Zhou; Guanghe Li

Ozonation with a subsequent biodegradation treatment was performed to remove recalcitrant organic compounds from long-term weathered crude oil contaminated soil. Samples were analyzed by GC/MS and column chromatography to monitor changes in crude oil composition. A functional gene array was used to examine microbial community dynamics. After a 6h ozonation treatment with a constant concentration of 10mgO(3)L(-1) at a flow rate of 2.0Lmin(-1), an average removal of crude oil was 22%. The concentration of long-chain n-alkanes (C(19)-C(28)) decreased while more biodegradable short-chain alkanes (C(14)-C(16)), n-aldehydes (C(13)-C(20)), and n-monocarboxylic acids (C(9)-C(20)) appeared. In the subsequent direct biodegradation and bioaugmentation, an additional 12-20% of residuals were removed. The total microbial functional gene numbers and overall genetic diversity decreased after ozonation. Also, most of the key functional genes pertaining to carbon, nitrogen, and sulfur cycling and organic contaminant degradation decreased, ranging from 20% to below the detection limit. However, in the subsequent biodegradation treatments, with and without bioaugmentation, the abundance of key genes in most functional groups recovered. This study provided insight into changes in crude oil composition and microbial functional genes responses during ozonation and bioremediation treatments. These changes demonstrate the feasibility of an integrated ozonation and biodegradation treatment to remove recalcitrant soil contaminants.


Applied and Environmental Microbiology | 2012

Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

Yuting Liang; Joy D. Van Nostrand; Lucie A. N′Guessan; Aaron D. Peacock; Ye Deng; Philip E. Long; C. Tom Resch; Liyou Wu; Zhili He; Guanghe Li; Terry C. Hazen; Derek R. Lovley; Jizhong Zhou

ABSTRACT To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.


The ISME Journal | 2015

Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover

Yuting Liang; Yuji Jiang; Feng Wang; Chongqing Wen; Ye Deng; Kai Xue; Yujia Qin; Yunfeng Yang; Liyou Wu; Jizhong Zhou; Bo Sun

To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time–decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.


Journal of Hazardous Materials | 2012

Spatial variations of hydrocarbon contamination and soil properties in oil exploring fields across China.

Yuting Liang; Xu Zhang; Jian Wang; Guanghe Li

Successful site remediation is critically based on a comprehensive understanding of distribution of contaminants, soil physico-chemical and microbial properties in oil contaminated sites. One hundred and ten topsoils were sampled from seven typical oil fields in different geoclimate regions across north to south China to investigate the spatial variances of oil contaminations and soil parameters. Oil concentrations and compositions, soil geochemical properties and microbial populations were analyzed and statistic analysis methods were used to analyze the spatial pattern of soil variables. The results indicated that oil contaminations were serious in most oil exploring areas in China, especially with high levels of polycyclic aromatic hydrocarbons (PAHs) from petrogenic origin. Ordination analyses indicated a relatively distinct spatial pattern that all soil samples grouped mainly by geographic locations, instead of distributing along contamination or other geochemical variable gradient. Microbial populations were found to be statistically positively correlated with soil nitrogen, phosphorus and water content, and negatively correlated with salt pH and soluble salts (P<0.05). This study provided insights into the spatial variability of soil variables in hydrocarbon-contaminated fields across large spatial scales, which is important for the environmental protection and further remediation in oil contaminated sites according to local conditions.


Mbio | 2015

Over 150 Years of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity

Yuting Liang; Liyou Wu; Ian Clark; Kai Xue; Yunfeng Yang; Joy D. Van Nostrand; Ye Deng; Zhili He; Steve P. McGrath; Jonathan Storkey; Penny R. Hirsch; Bo Sun; Jizhong Zhou

ABSTRACT Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. These results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. IMPORTANCE Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography.

Collaboration


Dive into the Yuting Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhili He

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liyou Wu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Ye Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge