Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangneng Peng is active.

Publication


Featured researches published by Guangneng Peng.


PLOS ONE | 2013

Impact of Hfq on Global Gene Expression and Intracellular Survival in Brucella melitensis

Mingquan Cui; Tongkun Wang; Jie Xu; Yuehua Ke; Xinying Du; Xitong Yuan; Zhoujia Wang; Chunli Gong; Yubin Zhuang; Shuangshuang Lei; Xiao Su; Xuesong Wang; Liuyu Huang; Zhijun Zhong; Guangneng Peng; Jing Yuan; Zeliang Chen; Yufei Wang

Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of brucellae to survive and multiply in the hostile environment of host macrophages is essential to its virulence. The RNA-binding protein Hfq is a global regulator that is involved in stress resistance and pathogenicity. Here we demonstrate that Hfq is essential for stress adaptation and intracellular survival in B. melitensis. A B. melitensis hfq deletion mutant exhibits reduced survival under environmental stresses and is attenuated in cultured macrophages and mice. Microarray-based transcriptome analyses revealed that 359 genes involved in numerous cellular processes were dysregulated in the hfq mutant. From these same samples the proteins were also prepared for proteomic analysis to directly identify Hfq-regulated proteins. Fifty-five proteins with significantly affected expression were identified in the hfq mutant. Our results demonstrate that Hfq regulates many genes and/or proteins involved in metabolism, virulence, and stress responses, including those potentially involved in the adaptation of Brucella to the oxidative, acid, heat stress, and antibacterial peptides encountered within the host. The dysregulation of such genes and/or proteins could contribute to the attenuated hfq mutant phenotype. These findings highlight the involvement of Hfq as a key regulator of Brucella gene expression and facilitate our understanding of the role of Hfq in environmental stress adaptation and intracellular survival of B. melitensis.


International Journal of Infectious Diseases | 2013

Human brucellosis in the People's Republic of China during 2005–2010

Zhijun Zhong; Shuang Yu; Xichun Wang; Shicun Dong; Jie Xu; Yufei Wang; Zeliang Chen; Zhihua Ren; Guangneng Peng

Brucellosis is a worldwide re-emerging zoonotic disease. It remains a serious public health problem in many developing countries including China. This review summarizes the epidemiological characteristics, morbidity, and endemic distributions of human brucellosis in the Peoples Republic of China for the period 2005-2010. From 2005 to 2010, the incidence of human brucellosis rose substantially in China, especially in the provinces of Inner Mongolia, Shanxi3, Heilongjiang, Hebei, Jilin, and Shanxi1. Meanwhile human brucellosis increased gradually in some southern provinces, such as Henan, Guangdong, and Fujian. Due to the rapid expansion of human brucellosis in China, surveillance and prevention of this disease has been greatly challenged.


PLOS ONE | 2012

Immunization of mice with recombinant protein CobB or AsnC confers protection against Brucella abortus infection.

Simei Fu; Jie Xu; Xianbo Li; Yongfei Xie; Yefeng Qiu; Xinying Du; Shuang Yu; Yaoxia Bai; Yanfen Chen; Tongkun Wang; Zhoujia Wang; Yaqing Yu; Guangneng Peng; Kehe Huang; Liuyu Huang; Yufei Wang; Zeliang Chen

Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy.


PLOS ONE | 2016

First Report of the Human-Pathogenic Enterocytozoon bieneusi from Red-Bellied Tree Squirrels (Callosciurus erythraeus) in Sichuan, China.

Lei Deng; Wei Li; Xingming Yu; Chao Gong; Xuehan Liu; Zhijun Zhong; Na Xie; Shuangshuang Lei; Jianqiu Yu; Hualin Fu; Hongwei Chen; Huailiang Xu; Yanchun Hu; Guangneng Peng

Enterocytozoon bieneusi is a common opportunistic pathogen causing diarrhea and enteric disease in a variety of animal hosts. Although it has been reported in many animals, there is no published information available on the occurrence of E. bieneusi in red-bellied tree squirrels. To understand the occurrence, genetic diversity, and zoonotic potential of E. bieneusi in red-bellied tree squirrels, 144 fecal specimens from Sichuan province, China, were examined by PCR amplification and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi. The overall infection rate of E. bieneusi 16.7% (24/144) was observed in red-bellied tree squirrels. Altogether five genotypes of E. bieneusi were identified: three known genotypes D (n = 18), EbpC (n = 3), SC02 (n = 1) and two novel genotypes CE01, CE02 (one each). Multilocus sequence typing (MLST) analysis employing three microsatellite (MS1, MS3, MS7) and one minisatellite (MS4) revealed 16, 14, 7 and 14 positive specimens were successfully sequenced, and identified eight, three, three and two genotypes at four loci, respectively. In phylogenetic analysis, the three known genotypes D, EbpC, and SC02 were clustered into group 1 with zoonotic potential, and the two novel genotypes CE01 and CE02 were clustered into group 6. The present study firstly reported the occurrence of E. bieneusi in red-bellied tree squirrels in China, and the E. bieneusi genotypes D and EbpC were found in humans previously. These results indicate that red-bellied tree squirrels may play a potential role in the transmission of E. bieneusi to humans.


Veterinary Microbiology | 2012

Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice

Xianbo Li; Jie Xu; Yongfei Xie; Yefeng Qiu; Simei Fu; Xitong Yuan; Yuehua Ke; Shuang Yu; Xinying Du; Mingquan Cui; Yanfen Chen; Tongkun Wang; Zhoujia Wang; Yaqing Yu; Kehe Huang; Liuyu Huang; Guangneng Peng; Zeliang Chen; Yufei Wang

Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis.


Parasite | 2017

Epidemiology of Cryptosporidium infection in cattle in China: a review

Chao Gong; Xuefeng Cao; Lei Deng; Wei Li; Xiangming Huang; Jingchao Lan; Qicheng Xiao; Zhijun Zhong; Fan Feng; Yue Zhang; Wen-Bo Wang; Ping Guo; Kongju Wu; Guangneng Peng

The present review discusses the findings of cryptosporidiosis research conducted in cattle in China and highlights the currently available information on Cryptosporidium epidemiology, genetic diversity, and distribution in China, which is critical to understanding the economic and public health importance of cryptosporidiosis transmission in cattle. To date, 10 Cryptosporidium species have been detected in cattle in China, with an overall infection rate of 11.9%. The highest rate of infection (19.5%) was observed in preweaned calves, followed by that in juveniles (10.69%), postweaned juveniles (9.0%), and adult cattle (4.94%). The dominant species were C. parvum in preweaned calves and C. andersoni in postweaned, juvenile, and adult cattle. Zoonotic Cryptosporidium species (C. parvum and C. hominis) were found in cattle, indicating the possibility of transmission between humans and cattle. Different cattle breeds had significant differences in the prevalence rate and species of Cryptosporidium. This review demonstrates an age-associated, breed-associated, and geographic-related occurrence of Cryptosporidium and provides references for further understanding of the epidemiological characteristics, and for preventing and controlling the disease.


Parasites & Vectors | 2017

Presence of zoonotic Cryptosporidium scrofarum, Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotypes in captive Eurasian wild boars (Sus scrofa) in China: potential for zoonotic transmission

Wei Li; Lei Deng; Kongju Wu; Xiangming Huang; Yuan Song; Huaiyi Su; Yanchun Hu; Hualin Fu; Zhijun Zhong; Guangneng Peng

BackgroundCryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are the main causal pathogens of gastrointestinal disease. However, there are limited reports about the prevalence of these organisms in captive Eurasian wild boars worldwide. Therefore, we examined the occurrence and identified the species/assemblages/genotypes of these pathogens in captive Eurasian wild boars, and estimated the zoonotic potential.FindingsOf 357 fecal samples collected from captive Eurasian wild boars in China, 155 (43.4%) were infected with Cryptosporidium, G. duodenalis and/or E. bieneusi. The infection rates significantly differed in different areas, but did not differ between wild boars kept indoors and outdoors. Three (0.8%), 11 (3.1%) and 147 (41.2%) fecal samples were positive for Cryptosporidium, G. duodenalis and E. bieneusi, respectively. Sequence analysis of SSU rRNA gene revealed that all of the Cryptosporidium strains belonged to C. scrofarum. Based on the sequence analysis of the β-giardia gene of G. duodenalis, assemblages E and A were characterized. Fourteen E. bieneusi genotypes comprising five novel (WildBoar 7–11) and eight known (EbpC, F, CHG19, CHC5, PigEBITS5, D, RWSH4, SC02) genotypes were identified by ITS sequencing. EbpC was the most frequent genotype, detected in 85 specimens. Phylogenetic analysis revealed that all 14 genotypes belonged to Group 1.ConclusionsThis first report on the occurrence of Cryptosporidium, G. duodenalis and E. bieneusi in captive wild boars in China indicates that the presence of zoonotic species/assemblages/genotypes poses a threat to public health. The findings suggest that wild boars could be a significant source of human infection and water pollution.


PLOS ONE | 2017

Multi-locus genotypes of Enterocytozoon bieneusi in captive Asiatic black bears in southwestern China: High genetic diversity, broad host range, and zoonotic potential

Lei Deng; Wei Li; Zhijun Zhong; Chao Gong; Xuefeng Cao; Yuan Song; Wuyou Wang; Xiangming Huang; Xuehan Liu; Yanchun Hu; Hualin Fu; Min He; Ya Wang; Yue Zhang; Kongju Wu; Guangneng Peng

Enterocytozoon bieneusi is an obligate eukaryotic intracellular parasite that infects a wide variety of vertebrate and invertebrate hosts. Although considerable research has been conducted on this organism, relatively little information is available on the occurrence of E. bieneusi in captive Asiatic black bears. The present study was performed to determine the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in captive Asiatic black bears in zoos in southwestern China. Fecal specimens from Asiatic black bears in four zoos, located in four different cities, were collected and analyzed for the prevalence of E. bieneusi. The average prevalence of E. bieneusi was 27.4% (29/106), with the highest prevalence in Guiyang Zoo (36.4%, 16/44). Altogether, five genotypes of E. bieneusi were identified among the 29 E. bieneusi-positive samples, including three known genotypes (CHB1, SC02, and horse2) and two novel genotypes named ABB1 and ABB2. Multi-locus sequence typing using three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4) revealed V, III, V, and IV genotypes at these four loci, respectively. Phylogenetic analysis showed that the genotypes SC02 and ABB2 were clustered into group 1 of zoonotic potential, the genotypes CHB1 and ABB1 were clustered into a new group, and the genotype horse2 was clustered into group 6 of unclear zoonotic potential. In conclusion, this study identified two novel E. bieneusi genotypes in captive Asiatic black bears, and used microsatellite and minisatellite markers to reveal E. bieneusi genetic diversity. Moreover, our findings show that genotypes SC02 (identified in humans) and ABB2 belong to group 1 with zoonotic potential, suggesting the risk of transmission of E. bieneusi from Asiatic black bears to humans and other animals.


Oncotarget | 2016

Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of saanen goat

Yajun He; Quan Mo; Biao Luo; Yan Qiao; Ruiguang Xu; Zhicai Zuo; Xiang Nong; Junliang Deng; Guangneng Peng; Wei He; Yahui Wei; Yanchun Hu

E. adenophorum has reported to cause hepatotoxicity. But, the precise effects of E. adenophorum on hepatocytes is unclear. Saanen goats were fed on E. adenophorum to detect the cytotoxicity effects of E. adenophorum on hepatocytes. Our study has shown that the typical apoptotic features, the increasing apoptotic hepatocytes and activated caspase-9, −3 and the subsequent cleavage of PARP indicated the potent pro-apoptotic effects of E. adenophorum. Moreover, the translocation of Bax and Cyt c between mitochondria and cytosol triggering the forming of apoptosome proved that the mitochondria-mediated apoptosis was triggered by E. adenophorum. Furthermore, E. adenophorum increased the MDC-positive autophagic vacuoles and the subcellular localization of punctate LC3, the ratio of LC3-II/LC3-I and the protein levels of Beclin 1, but decreased that of P62, indicating the potent pro-autophagic effects of E. adenophorum. In addition, E. adenophorum significantly inhibited the protein leves of p-PI3K, p-Akt and p-mTORC1, but increased PTEN and p-AMPK. Also, the p-mTORC2 and p-Akt Ser473 were inhibited, indicating that the supression of mTORC2/Akt pathway could induce the autophagy of hepatocytes. The autophagy-realted results indicated that the inhibition of PI3K/Akt/mTORC1- and mTORC2/Akt-mediated pathways contributed to the pro-autophagic activity of E. adenophorum. These findings provide new insights to understand the mechanisms involved in E. adenophorum-caused hepatotoxicity of Saanen goat.


Scientific Reports | 2016

Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence-related sRNA in Brucella melitensis

Zhijun Zhong; Xiaoyang Xu; Xinran Li; Shiwei Liu; Shuangshuang Lei; Mingjuan Yang; Jiuxuan Yu; Jiuyun Yuan; Yuehua Ke; Xinying Du; Zhoujia Wang; Zhihua Ren; Guangneng Peng; Yufei Wang; Zeliang Chen

Brucella is the causative agent of brucellosis, a worldwide epidemic zoonosis. Small noncoding RNAs (sRNAs) are important modulators of gene expression and involved in pathogenesis and stress adaptation of Brucella. In this study, using a strand-specific RNA deep-sequencing approach, we identified a global set of sRNAs expressed by B. melitensis 16M. In total, 1321 sRNAs were identified, ranging from 100 to 600 nucleotides. These sRNAs differ in their expression levels and strand and chromosomal distributions. The role of BSR0441, one of these sRNAs, in the virulence of B. melitensis 16M was further characterized. BSR0441 was highly induced during the infection of macrophages and mice. The deletion mutant of BSR0441 showed significantly reduced spleen colonization in the middle and late phases of infection. The expression of the BSR0441 target mRNA genes was also altered in the BSR0441 mutant strain during macrophage and mice infection, which is consistent with its reduced intracellular survival capacity. In summary, Brucella encodes a large number of sRNAs, which may be involved in the stress adaptation and virulence of Brucella. Further investigation of these regulators will extend our understanding of the Brucella pathogenesis mechanism and the interactions between Brucella and its hosts.

Collaboration


Dive into the Guangneng Peng's collaboration.

Top Co-Authors

Avatar

Zhijun Zhong

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hualin Fu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanchun Hu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhihua Ren

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lei Deng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junliang Deng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Suizhong Cao

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhicai Zuo

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuehan Liu

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge