Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihua Ren is active.

Publication


Featured researches published by Zhihua Ren.


PLOS ONE | 2014

Anti-tumor effect of a novel soluble recombinant human endostatin: administered as a single agent or in combination with chemotherapy agents in mouse tumor models.

Zhihua Ren; Yanan Wang; Wenhong Jiang; Wei Dai; Yongping Jiang

Background Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin) that contained 3 additional amino acid residues (arginine, glycine, and serine) at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX) and cisplatin (DDP). Methods rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37). rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor. Results rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors or growth of A549 tumors. Conclusion Soluble rhEndostatin exhibits a potent anti-tumor activity in mouse xenograft models and it also has an additive effect with CTX and DDP, implying possible applications in clinical settings.


Stem Cells Translational Medicine | 2017

Safety and Efficacy of Megakaryocytes Induced from Hematopoietic Stem Cells in Murine and Nonhuman Primate Models

Xin Guan; Meng Qin; Yu Zhang; Yanan Wang; Bin Shen; Zhihua Ren; Xinxin Ding; Wei Dai; Yongping Jiang

Because of a lack of platelet supply and a U.S. Food and Drug Administration‐approved platelet growth factor, megakaryocytes have emerged as an effective substitute for alleviating thrombocytopenia. Here, we report the development of an efficient two‐stage culture system that is free of stroma, animal components, and genetic manipulations for the production of functional megakaryocytes from hematopoietic stem cells. Safety and functional studies were performed in murine and nonhuman primate models. One human cryopreserved cord blood CD34+ cell could be induced ex vivo to produce up to 1.0 × 104 megakaryocytes that included CD41a+ and CD42b+ cells at 82.4% ± 6.1% and 73.3% ± 8.5% (mean ± SD), respectively, yielding approximately 650‐fold higher cell numbers than reported previously. Induced human megakaryocytic cells were capable of engrafting and producing functional platelets in the murine xenotransplantation model. In the nonhuman primate model, transplantation of primate megakaryocytic progenitors increased platelet count nadir and enhanced hemostatic function with no adverse effects. In addition, primate platelets were released in vivo as early as 3 hours after transplantation with autologous or allogeneic mature megakaryocytes and lasted for more than 48 hours. These results strongly suggest that large‐scale induction of functional megakaryocytic cells is applicable for treating thrombocytopenic blood diseases in the clinic. Stem Cells Translational Medicine 2017;6:897–909


Stem Cells Translational Medicine | 2017

Large-Scale Ex Vivo Generation of Human Red Blood Cells from Cord Blood CD34+ Cells

Yu Zhang; Chen Wang; Lan Wang; Bin Shen; Xin Guan; Jing Tian; Zhihua Ren; Xinxin Ding; Yupo Ma; Wei Dai; Yongping Jiang

The ex vivo generation of human red blood cells on a large scale from hematopoietic stem and progenitor cells has been considered as a potential method to overcome blood supply shortages. Here, we report that functional human erythrocytes can be efficiently produced from cord blood (CB) CD34+ cells using a bottle turning device culture system. Safety and efficiency studies were performed in murine and nonhuman primate (NHP) models. With the selected optimized culture conditions, one human CB CD34+ cell could be induced ex vivo to produce up to 200 million erythrocytes with a purity of 90.1% ± 6.2% and 50% ± 5.7% (mean ± SD) for CD235a+ cells and enucleated cells, respectively. The yield of erythrocytes from one CB unit (5 million CD34+ cells) could be, in theory, equivalent to 500 blood transfusion units in clinical application. Moreover, induced human erythrocytes had normal hemoglobin content and could continue to undergo terminal maturation in the murine xenotransplantation model. In NHP model, xenotransplantation of induced human erythrocytes enhanced hematological recovery and ameliorated the hypoxia situation in the primates with hemorrhagic anemia. These findings suggested that the ex vivo‐generated erythrocytes could be an alternative blood source for traditional transfusion products in the clinic. Stem Cells Translational Medicine 2017;6:1698–1709


Stem Cell Research & Therapy | 2017

A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation

Lan Wang; Xin Guan; Huihui Wang; Bin Shen; Yu Zhang; Zhihua Ren; Yupo Ma; Xinxin Ding; Yongping Jiang

BackgroundAccumulated evidence supports the potent stimulating effects of multiple small molecules on the expansion of hematopoietic stem cells (HSCs) which are important for the therapy of various hematological disorders. Here, we report a novel, optimized formula, named the SC cocktail, which contains a combination of three such small molecules and four cytokines.MethodsSmall-molecule candidates were individually screened and then combined at their optimal concentration with the presence of cytokines to achieve maximum capacity for stimulating the human CD34+ cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. The functional preservation of HSC stemness was confirmed by additional cell and molecular assays in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment of human cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through quantitative polymerase chain reaction (qPCR) during the process of CD34+ cell expansion.ResultsThe SC cocktail supported the retention of the immunophenotype of hematopoietic stem/progenitor cells remarkably well, by yielding purities of 86.6 ± 11.2% for CD34+ cells and 76.2 ± 10.5% for CD34+CD38– cells, respectively, for a 7-day culture. On day 7, the enhancement of expansion of CD34+ cells and CD34+CD38– cells reached a maxima of 28.0 ± 5.5-fold and 27.9 ± 4.3-fold, respectively. The SC cocktail-expanded CD34+ cells preserved the characteristics of HSCs by effectively inhibiting their differentiation in vitro and retained the multilineage differentiation potential in primary and secondary in vivo murine xenotransplantation trials. Further gene expression analysis suggested that the small-molecule combination strengthened the ability of the cytokines to enhance the Notch pathway for the preservation of HSC stemness, and inhibited the ability of the cytokines to activate the Wnt pathway for HSC differentiation.ConclusionsWe developed an optimal small-molecule/cytokine combination for the enhancement of HSC expansion via inhibition of differentiation. This approach indicates promising application for preparation of both the HSCs and the mature, functional hematopoietic cells for clinical transplantation.


Chinese Medical Sciences Journal | 2017

Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells

Qiong He; Huihui Wang; Tao Cheng; Weiping Yuan; Yupo Ma; Yongping Jiang; Zhihua Ren

Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.


Cell Cycle | 2014

Identification of the nuclear localization signal of SALL4B, a stem cell transcription factor

Meng Wu; Feikun Yang; Zhihua Ren; Yongping Jiang; Yupo Ma; Yan Chen; Wei Dai

SALL4B plays a critical role in maintaining the pluripotency of embryonic stem cells and hematopoietic stem cells. SALL4B primarily functions as a transcription factor, and, thus, its nuclear localization is paramount to its biological activities. To understand the structural basis by which SALL4B was transported and retained in the nucleus, we made a series of SALL4B constructs with deletions or point mutations. We found that K64R mutation resulted in a random distribution of SALL4B within the cell. An analysis of neighboring amino acid sequences revealed that 64KRLR67 in SALL4B matches exactly with the canonical nuclear localization signal (K-K/R-x-K/R). SALL4B fragment (a.a. 50–109) that contained KRLR was sufficient for targeting GFP-tagged SALL4B to the nucleus, whereas K64R mutation led to a random distribution of GFP-SALL4B signal within the cell. We further demonstrated that the nuclear localization was essential for transactivating luciferase reporter gene driven by OCT4 promoter, a known transcriptional target of SALL4B. Therefore, our study identifies the KRLR sequence as a bona fide nuclear localization signal for SALL4B.


PLOS ONE | 2017

Large-scale ex vivo generation of human neutrophils from cord blood CD34 + cells

Zhenwang Jie; Yu Zhang; Chen Wang; Bin Shen; Xin Guan; Zhihua Ren; Xinxin Ding; Wei Dai; Yongping Jiang

Conventional high-dose chemotherapy frequently leads to severe neutropenia, during which patients experience a high risk of infection. Although support care with donor’s neutrophils is possible this choice is largely hampered by the limited availability of matched donors. To overcome this problem, we explored a large-scale ex vivo production of neutrophils from hematopoietic stem cells (HSCs) using a four-stage culture approach in a roller-bottle production platform. We expanded CD34+ HSCs isolated from umbilical cord blood (UCB) using our in-house special medium supplemented with cytokine cocktails and achieved about 49000-fold expansion of cells, among which about 61% were differentiated mature neutrophils. Ex vivo differentiated neutrophils exhibited a chemotactic activity similar to those from healthy donors and were capable of killing E. coli in vitro. The expansion yield as reported herein was at least 5 times higher than any other methods reported in the literature. Moreover, the cost of our modified medium was only a small fraction (<1/60) of the StemSpan™ SFEM. Therefore, our ex vivo expansion platform, coupled with a low cost of stem cell culture due to the use of a modified medium, makes large-scale manufacturing neutrophils possible, which should be able to greatly ameliorate neutrophil shortage for transfusion in the clinic.


Stem cell investigation | 2016

Influence of IL-3 functional fragment on cord blood stem cell ex vivo expansion and differentiation.

Zhihua Ren; Yu Zhang; Yanxi Zhang; Wenhong Jiang; Wei Dai; Xinxin Ding; Yongping Jiang

BACKGROUND Recombinant human interleukin-3 (rhIL-3) is a multiple hematopoietic growth factor, which enhances stem cell expansion and hematopoiesis regeneration in vitro and in vivo, when administrated in combination with other cytokines. However, the structure-function study of rhIL-3 remains rarely studied, so far. The purpose of this study was to recognize the short peptide with similar function as rhIL-3, and assess the hematopoietic efficacy in umbilical cord blood (UCB) stem cell culture as well. METHODS Two novel monoclonal antibodies (mAb) (C1 and E1) were generated against rhIL-3 using hybridoma technique. Eleven short peptides were depicted and synthesized to overlap covering the full length sequence of rhIL-3. ELISA was employed to distinguish the antibody-binding peptide from the negative peptides. In addition, the multi-potential hematopoiesis capabilities of the positive peptides were evaluated by adding 25 ng/mL of each peptide to the culture medium of hematopoietic stem cells (HSCs) derived from UCB. Total nucleated cell number and the CD34(+) cell number from each individual treatment group were calculated on day 7. Correlated antibodies at 0.5 or 2 molar fold to each peptide were also tested in the stem cell expansion experiment, to further confirm the bioactivity of the peptides. RESULTS Two peptides were recognized by the novel generated antibodies, using ELISA. Peptide 3 and 8 exhibited comparable hematopoiesis potentials, with 25.01±0.14 fold, and 19.89±0.12 fold increase of total nucleated cell number on day 7, respectively, compared with the basal medium control (4.93±0.55 fold). These biological effects were neutralized by adding the corresponding mAb at a dose dependent manner. CONCLUSIONS Our results identified two specific regions of rhIL-3 responsible for HSC proliferation and differentiation, which were located from 28 to 49 amino acids (P3), and 107 to 127 amino acids (P8), respectively. The short peptide 3 and 8 might act synergistically, which could serve as an economic substitute to rhIL-3 in research laboratory.


Acta Pharmaceutica Sinica B | 2014

Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells

Shuoqi Xu; Zhihua Ren; Yanan Wang; Xinxin Ding; Yongping Jiang

Cytochrome P450 (CYP) enzymes metabolize numerous endogenous substrates, such as retinoids, androgens, estrogens and vitamin D, that can modulate important cellular processes, including proliferation, differentiation and apoptosis. The aim of this study is to characterize the expression of CYP genes in CD34+ human cord blood hematopoietic stem and early progenitor cells (CBHSPCs) as a first step toward assessment of the potential biological functions of CYP enzymes in regulating the expansion or differentiation of these cells. CD34+ CBHSPCs were purified from umbilical cord blood via antibody affinity chromatography. Purity of CD34+ CBHSPCs was assessed using fluorescence-activated cell sorting. RNA was isolated from purified CD34+ CBHSPCs and total mononuclear cells (MNCs) for RNA-PCR analysis of CYP expression. Fourteen human CYPs were detected in the initial screening with qualitative RT-PCR in CD34+ CBHSPCs. Further quantitative RNA-PCR analysis of the detected CYP transcripts yielded evidence for preferential expression of CYP2R1 in CD34+ CBHSPCs relative to MNCs; and for greater expression of CYP1B1 in MNCs relative to CD34+ CBHSPCs. These findings provide the basis for further studies on possible functions of CYP2R1 and CYP1B1 in CBHSPCs׳ proliferation and/or differentiation and their potential utility as targets for drugs designed to modulate CD34+ CBHSPC expansion or differentiation.


Journal of Stem Cell Research & Therapy | 2014

Transactivating Target Gene Expression by Recombinant SALL4B: A Pluripotent Stem Cell Marker

Mengru Yuan; Yun Wang; Zhihua Ren; Wei Dai; Yongping Jiang

SALL4 is an important transcription factor that supports the expansion of hematopoietic stem cells. SALL4 expression is also deregulated in several types of leukemia. Recent studies reveal that SALL4B, a major isoform of SALL4, is heavily modified by post-translational mechanisms and these modifications are critical for their stability, subcellular localization, and transcriptional activities. Given the importance of SALL4B in supporting stem cell selfrenewal and expansion, we optimized a large scale expression and purification process to obtain SALL4B using the baculovirus expression vector system. Recombinant TAT-SALL4B was efficiently purified by nickel affinity chromatography under native conditions. Immuno-blotting confirmed that recombinant SALL4B was highly expressed and purified. As the first step to test the biological activity of purified TAT-SALL4B, we investigated whether TATSALL4B, directly supplemented to the culture medium, was capable of entering into cells through the protein transduction process. Fluorescent microscopy revealed that recombinant TAT-SALL4B specifically localized to the nucleus in a concentration- and time-dependent manner. Reporter gene assays showed that purified TAT-SALL4B protein activated OCT4 gene promoter, indicating that recombinant SALL4B was transcriptionally active in vivo. Combined, our results suggest that TAT-SALL4B may provide a promising factor for supporting ex vivo expansion of hematopoietic stem cells.

Collaboration


Dive into the Zhihua Ren's collaboration.

Top Co-Authors

Avatar

Yongping Jiang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Shen

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xinxin Ding

State University of New York at Purchase

View shared research outputs
Top Co-Authors

Avatar

Xin Guan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yupo Ma

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Meng Qin

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Chen Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lan Wang

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge