Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guannan Zhao is active.

Publication


Featured researches published by Guannan Zhao.


Journal of Cancer Science & Therapy | 2015

miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer

Guannan Zhao; Yuqi Guo; Zixuan Chen; Yinan Wang; Chuanhe Yang; Andrew Dudas; Ziyun Du; Wen Liu; Yanan Zou; Erzsebet Szabo; Sue-Chin Lee; Michelle Sims; Weiwang Gu; Todd Tillmanns; Lawrence M. Pfeffer; Gabor Tigyi; Junming Yue

OBJECTIVE Ovarian cancer is a gynecological malignancy that has a high mortality rate in women due to metastatic progression and recurrence. miRNAs are small, endogenous, noncoding RNAs that function as tumor suppressors or oncogenes in various human cancers by selectively suppressing the expression of target genes. The objective of this study is to investigate the role of miR-203 in ovarian cancer. METHODS miR-203 was expressed in ovarian cancer SKOV3 and OVCAR3 cells using lentiviral vector and cell proliferation, migration, invasion were examined using MTT, transwell and Matrigel assays, respectively. Tumor growth was examined using Xenograft mouse model. RESULTS miR-203 expression was downregulated, whereas expression of its target gene Snai2 was upregulated in human ovarian serous carcinoma tissue as compared to normal ovaries. In addition, high miR-203 expression was associated with long-term survival rate of ovarian cancer patients. miR-203 overexpression inhibited cell proliferation, migration, and invasion of SKOV3 and OVCAR3 ovarian cancer cells. Furthermore, miR-203 overexpression inhibited the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Silencing Snai2 with lentiviral short hairpin (sh) RNA mimics miR-203-mediated inhibition of EMT and tumor cell invasion. Xenografts of miR-203-overexpressing ovarian cancer cells in immunodeficient mice exhibited a significantly reduced tumor growth. CONCLUSION miR-203 functions as a tumor suppressor by down regulating Snai2 in ovarian cancer.


PLOS ONE | 2014

Doxycycline Inducible Kruppel-Like Factor 4 Lentiviral Vector Mediates Mesenchymal to Epithelial Transition in Ovarian Cancer Cells

Zixuan Chen; Yinan Wang; Wen Liu; Guannan Zhao; Sue-Chin Lee; Andrea Balogh; Yanan Zou; Yuqi Guo; Zhan Zhang; Weiwang Gu; Chengyao Li; Gabor Tigyi; Junming Yue

Ovarian cancer presents therapeutic challenges due to its typically late detection, aggressive metastasis, and therapeutic resistance. The transcription factor Krüppel-like factor 4 (KLF4) has been implicated in human cancers as a tumor suppressor or oncogene, although its role depends greatly on the cellular context. The role of KLF4 in ovarian cancer has not been elucidated in mechanistic detail. In this study, we investigated the role of KLF4 in ovarian cancer cells by transducing the ovarian cancer cell lines SKOV3 and OVCAR3 with a doxycycline-inducible KLF4 lentiviral vector. Overexpression of KLF4 reduced cell proliferation, migration, and invasion. The epithelial cell marker gene E-cadherin was significantly upregulated, whereas the mesenchymal cell marker genes vimentin, twist1and snail2 (slug) were downregulated in both KLF4-expressing SKOV3 and OVCAR3 cells. KLF4 inhibited the transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Taken together, our data demonstrate that KLF4 functions as a tumor suppressor gene in ovarian cancer cells by inhibiting TGFβ-induced EMT.


Viruses | 2015

Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

Xianqi Zhao; Yanan Zou; Qingqing Gu; Guannan Zhao; Horace Gray; Lawrence M. Pfeffer; Junming Yue

Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1) is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7) cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA) construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT) by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA) and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.


Biochemical and Biophysical Research Communications | 2017

KLF4 expression enhances the efficacy of chemotherapy drugs in ovarian cancer cells

Baojin Wang; Airong Shen; Xuan Ouyang; Guannan Zhao; Ziyun Du; Wenying Huo; Tao Zhang; Yinan Wang; Chuanhe Yang; Peixin Dong; Hidemichi Watari; Lawrence M. Pfeffer; Junming Yue

KLF4 is a transcriptional factor that can function either as a tumor suppressor or oncogene in cancer based on its cellular context. We recently demonstrated that KLF4 was a tumor suppressor in ovarian cancer cells by inhibiting the epithelial to mesenchymal transition. Here we report that KLF4 expression was downregulated in ovarian cancer tissue compared to normal ovarian tissue, and low KLF4 expression correlated with high risk ovarian carcinoma and poor patient survival. Enforced KLF4 expression by lentiviral transduction sensitized ovarian cancer cells to the effects of the chemotherapy drugs, paclitaxel and cisplatin. Treatment of ovarian cancer cells with APTO-253, a small molecule inducer of KLF4, enhanced the efficacy of both chemotherapy drugs. KLF4 expression mediated by lentiviral vector or induced by APTO-253 resulted in G1 phase arrest in ovarian cancer cells. Our results demonstrate that for the first time that inducing KLF4 expression with APTO-253 is a novel therapeutic strategy for treating ovarian cancer.


Oncotarget | 2017

Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells

Guannan Zhao; Qinghui Wang; Qingqing Gu; Wenan Qiang; Jian Jun Wei; Peixin Dong; Hidemichi Watari; Wei Li; Junming Yue

BIRC5 encodes the protein survivin, a member of the inhibitor of apoptosis family. Survivin is highly expressed in a variety of cancers but has very low expression in the corresponding normal tissues, and its expression is often associated with tumor metastasis and chemoresistance. We report that survivin was highly expressed in ovarian cancer and strongly correlated with patient overall poor survival. For the first time, we provide experimental evidence that survivin is involved in epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 gene editing led to the inhibition of EMT by upregulating epithelial cell marker, cytokeratin 7 and downregulating mesenchymal markers: snail2, β-catenin, and vimentin in both ovarian cancer SKOV3 and OVCAR3 cells. Consistent with this molecular approach, pharmacological treatment of ovarian cancer cells using a small molecule survivin inhibitor, YM155 also inhibited EMT in these ovarian cancer cell lines. Overexpression of BIRC5 promoted EMT in SKOV3 cells. Using molecular or pharmacological approaches, we found that cell proliferation, migration, and invasion were significantly inhibited following BIRC5 disruption in both cell lines. Inhibition of BIRC5 expression also sensitized cell responses to paclitaxel treatment. Moreover, loss of BIRC5 expression attenuated TGFβ signaling in both SKOV3 and OVCAR3 cells. Collectively, our studies demonstrated that disruption of BIRC5 expression inhibited EMT by attenuating the TGFβ pathway in ovarian cancer cells.


Scientific Reports | 2018

Deletion of DGCR8 in VSMCs of adult mice results in loss of vascular reactivity, reduced blood pressure and neointima formation

Yanan Zou; Zixuan Chen; Brett L. Jennings; Guannan Zhao; Qingqing Gu; Anindya Bhattacharya; Yan Cui; Bo Yu; Kafait U. Malik; Junming Yue

DiGeorge syndrome chromosomal region 8 (DGCR8), a double-stranded-RNA-binding protein, participates in the miRNA biogenesis pathway and contributes to miRNA maturation by interacting with the RNAase III enzyme Drosha in cell nuclei. To investigate the role of DGCR8 in vascular smooth muscle cells (VSMCs) at the postnatal stages, we generated tamoxifen-inducible VSMC specific knockout (iKO) mice by crossing DGCR8loxp/loxp with VSMC specific tamoxifen-inducible Cre transgenic mice SMA-Cre-ERT2. DGCR8iKO mice display reduced body weight one month following tamoxifen treatment and died around 3 months. Blood pressure and vascular reactivity were significantly reduced in DGCR8iKO mice compared to control. Furthermore, loss of DGCR8 in VSMCs inhibited cell proliferation, migration and neointima formation. VSMC differentiation marker genes, including SMA and SM22, were downregulated in DGCR8 iKO mice. The majority of miRNAs were downregulated in DGCR8iKO mice. Disruption of the DGCR8-mediated miRNA biogenesis pathway attenuated multiple signaling pathways including ERK1/2 and AKT. Our results demonstrate that the DGCR8-mediated miRNA pathway is required for maintaining blood pressure, vascular reactivity and vascular wall remodeling at the postnatal stages.


Oncology Letters | 2018

Lentiviral vector mediated-ASAP1 expression promotes epithelial to mesenchymal transition in ovarian cancer cells

Tao Zhang; Guannan Zhao; Chuanhe Yang; Peixin Dong; Hidemichi Watari; Lin Zeng; Lawrence M. Pfeffer; Junming Yue

Ovarian cancer is one of the most common malignancies in women and has a high mortality rate due to metastatic progression and tumor recurrence. ASAP1 (ArfGAP with SH3 Domain, Ankyrin Repeat and PH Domain 1) is an ADP-ribosylation factor GTPase-activating protein, which is involved in tumor metastasis. However, the role of ASAP1 in ovarian cancer is completely unknown. The present study reported that ASAP1 was highly expressed in ovarian carcinoma, and expression positively-correlated with overall poor survival and prognosis of patients. Lentiviral vector mediated ASAP1 expression promoted cell migration and invasion in ovarian cancer cell lines SKOV3 and OVCAR3. In addition, ASAP1 promoted cell proliferation, survival and inhibited chemotherapy drug paclitaxel-induced cell apoptosis. Furthermore, ASAP1 expression promoted epithelial to mesenchymal transition (EMT) by upregulating the mesenchymal cell markers N-cadherin and vimentin, and downregulating epithelial cell marker E-cadherin in the ovarian cancer cell lines. The data indicate for the first time that ASAP1 exhibits an oncogenic role by promoting EMT in ovarian cancer cells.


Journal of Experimental & Clinical Cancer Research | 2018

miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway

Baojin Wang; Xia Li; Guannan Zhao; Huan Yan; Peixin Dong; Hidemichi Watari; Michelle Sims; Wei Li; Lawrence M. Pfeffer; Yuqi Guo; Junming Yue

BackgroundWe previously reported that miR-203 functions as a tumor suppressor in ovarian cancer cells by directly targeting transcription factor Snai2 and inhibiting epithelial to mesenchymal transition (EMT), whereas BIRC5/survivin promotes EMT. In this study, we tested our hypothesis that miR-203 inhibits ovarian tumor metastasis by suppressing EMT through targeting BIRC5, using an orthotopic ovarian cancer mouse model.MethodsWe overexpressed miR-203 in ovarian cancer SKOV3 and OVCAR3 cells using a lentiviral vector and examined cell migration and invasion using transwell plates. The small molecule inhibitor, YM155, was used to inhibit survivin expression. miR-203-expressing and control SKOV3 cells were intrabursally injected into immunocompromised NSG female mice. Primary tumors in ovaries and metastatic tumors were collected to determine the expression of survivin and EMT markers using Western blot and immunostaining.ResultsOverexpression of miR-203 inhibits EMT by targeting BIRC5 in ovarian cancer SKOV3 and OVCAR3 cells. miR-203 expression enhances the ability of the survivin inhibitor YM155 to reduce tumor cell migration and invasion in vitro. We further showed that miR-203 expression attenuated the TGFβ pathway in both SKOV3 and OVCAR3 cells. miR-203 expression also inhibited primary tumor growth in ovaries and metastatic tumors in multiple peritoneal organs including liver and spleen.ConclusionmiR-203 inhibits ovarian tumor metastasis by targeting BIRC5/survivin and attenuating the TGFβ pathway.


Biochemical and Biophysical Research Communications | 2018

Knockdown of survivin results in inhibition of epithelial to mesenchymal transition in retinal pigment epithelial cells by attenuating the TGFβ pathway

Peng Zhang; Guannan Zhao; Liang Ji; Jinggang Yin; Lu Lu; Wei Li; Guomin Zhou; Edward Chaum; Junming Yue

Proliferative vitreoretinopathy (PVR) is a common complication of open globe injury and the most common cause of failed retinal detachment surgery. The response by retinal pigment epithelial (RPE) cells liberated into the vitreous includes proliferation and migration; most importantly, epithelial to mesenchymal transition (EMT) of RPE plays a central role in the development and progress of PVR. For the first time, we show that knockdown of BIRC5, a member of the inhibitor of apoptosis protein family, using either lentiviral vector based CRISPR/Cas9 nickase gene editing or inhibition of survivin using the small-molecule inhibitor YM155, results in the suppression of EMT in RPE cells. Knockdown of survivin or inhibition of survivin significantly reduced TGFβ-induced cell proliferation and migration. We further demonstrated that knockdown or inhibition of survivin attenuated the TGFβ signaling by showing reduced phospho-SMAD2 in BIRC5 knockdown or YM155-treated cells compared to controls. Inhibition of the TGFβ pathway using TGFβ receptor inhibitor also suppressed survivin expression in RPE cells. Our studies demonstrate that survivin contributes to EMT by cross-talking with the TGFβ pathway in RPE cells. Targeting survivin using small-molecule inhibitors may provide a novel approach to treat PVR disease.


Advances in biological regulation | 2018

Regulation of tumor cell – Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis

Gabor J. Tigyi; Junming Yue; Derek D. Norman; Erzsebet Szabo; Andrea Balogh; Louisa Balazs; Guannan Zhao; Sue Chin Lee

The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.

Collaboration


Dive into the Guannan Zhao's collaboration.

Top Co-Authors

Avatar

Junming Yue

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence M. Pfeffer

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Qingqing Gu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Yanan Zou

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Yinan Wang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuanhe Yang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Wei Li

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Zixuan Chen

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge