Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence M. Pfeffer is active.

Publication


Featured researches published by Lawrence M. Pfeffer.


Nature | 1999

NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase

Osman N. Ozes; Lindsey D. Mayo; Jason A. Gustin; Susan R. Pfeffer; Lawrence M. Pfeffer; David B. Donner

Activation of the nuclear transcription factor NF-κB by inflammatory cytokines requires the successive action of NF-κB-inducing kinase (NIK) and an IκB-kinase (IKK) complex composed of IKKα and IKKβ. Here we show that the Akt serine–threonine kinase is involved in the activation of NF-κB by tumour necrosis factor (TNF). TNF activates phosphatidylinositol-3-OH kinase (PI(3)K) and its downstream target Akt (protein kinase B). Wortmannin (a PI(3)K inhibitor), dominant-negative PI(3)K or kinase-dead Akt inhibits TNF-mediated NF-κB activation. Constitutively active Akt induces NF-κB activity and this effect is blocked by dominant-negative NIK. Conversely, NIK activates NF-κB and this is blocked by kinase-dead Akt. Thus, both Akt and NIK are necessary for TNF activation of NF-κB. Akt mediates IKKα phosphorylation at threonine 23. Mutation of this amino acid blocks phosphorylation by Akt or TNF and activation of NF-κB. These findings indicate that Akt is part of a signalling pathway that is necessary for inducing key immune and inflammatory responses.


Journal of Biological Chemistry | 2001

Interferon α/β Promotes Cell Survival by Activating Nuclear Factor κB through Phosphatidylinositol 3-Kinase and Akt

Chuan He Yang; Aruna Murti; Susan R. Pfeffer; Jong G. Kim; David B. Donner; Lawrence M. Pfeffer

Interferons (IFNs) play critical roles in host defense by modulating gene expression via activation of signal transducer and activator of transcription (STAT) factors. IFN-α/β also activates another transcription factor, nuclear factor κB (NF-κB), which protects cells against apoptotic stimuli. NF-κB activation requires the IFN-dependent association of STAT3 with the IFNAR1 chain of the IFN receptor. IFN-dependent NF-κB activation involves the sequential activation of a serine kinase cascade involving phosphatidylinositol 3-kinase (PI-3K) and Akt. Whereas constitutively active PI-3K and Akt induce NF-κB activation, Ly294002 (a PI-3K inhibitor), dominant-negative PI-3K, and kinase-dead Akt block IFN-dependent NF-κB activation. Moreover, dominant-negative PI-3K blocks IFN-promoted degradation of κBox α. Ly294002, a dominant-negative PI-3K construct, and kinase-dead Akt block IFN-promoted cell survival, enhancing apoptotic cell death. Therefore, STAT3, PI-3K, and Akt are components of an IFN signaling pathway that promotes cell survival through NF-κB activation.


Cancer Research | 2010

IFN INDUCES MIR-21 THROUGH A SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3-DEPENDENT PATHWAY AS A SUPPRESSIVE NEGATIVE FEEDBACK ON IFN-INDUCED APOPTOSIS

Chuan He Yang; Junming Yue; Meiyun Fan; Lawrence M. Pfeffer

The microRNA miR-21 is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. Here, we report that the cytokine IFN rapidly induces miR-21 expression in human and mouse cells. Signal transducer and activator of transcription 3 (STAT3) was implicated in this pathway based on the lack of IFN effect on miR-21 expression in prostate cancer cells with a deletion in the STAT3 gene. STAT3 ablation abrogated IFN induction of miR-21, confirming the important role of STAT3 in regulating miR-21. Chromatin immunoprecipitation analysis showed that STAT3 directly bound the miR-21 promoter in response to IFN. Experiments in mouse embryo fibroblasts with a genetic deletion of the p65 NF-κB subunit showed that IFN-induced miR-21 expression was also dependent on NF-κB. STAT3 silencing blocked both IFN-induced p65 binding to the miR-21 promoter and p65 nuclear translocation. Thus, IFN-induced miR-21 expression is coregulated by STAT3 and NF-κB at the level of the miR-21 promoter. Several cell death regulators were identified as downstream targets of miR-21, including PTEN and Akt. Functional experiments in prostate cancer cells directly showed that miR-21 plays a critical role in suppressing IFN-induced apoptosis. Our results identify miR-21 as a novel IFN target gene that functions as a key feedback regulator of IFN-induced apoptosis.


Journal of Biological Chemistry | 2011

MicroRNA miR-21 Regulates the Metastatic Behavior of B16 Melanoma Cells

Chuan He Yang; Junming Yue; Susan R. Pfeffer; Charles R. Handorf; Lawrence M. Pfeffer

Background: miRNAs are involved in many critical biological processes. Results: miR-21 induction is STAT3-dependent, and miR-21 knockdown inhibited melanoma cell proliferation and migration and enhanced apoptosis. Although B16 cells produced large lung metastases in mice, miR-21 knockdown cells only formed small lung lesions. Conclusion: miR-21 regulates the metastatic behavior of melanoma. Significance: miR-21 is identified as a potential drug target in melanoma. MicroRNA-21 (miR-21) is overexpressed in many human tumors and has been linked to various cellular processes altered in cancer. miR-21 is also up-regulated by a number of inflammatory agents, including IFN, which is of particular interest considering the close relationship between inflammation and cancer. Because miR-21 appears to be overexpressed in human melanoma, we examined the role of miR-21 in cancer development and metastasis in B16 mouse melanoma cells. We found that miR-21 is a member of an IFN-induced miRNA subset that requires STAT3 activation. To characterize the role of miR-21 in melanoma behavior, we transduced B16 cells with lentivirus encoding a miR-21 antagomir and isolated miR-21 knockdown B16 cells. miR-21 knockdown or IFN treatment alone inhibited B16 cell proliferation and migration in vitro, and in combination they had an enhanced effect. Moreover, miR-21 knockdown sensitized B16 cells to IFN-induced apoptosis. In B16 cells miR-21 targeted tumor suppressor (PTEN and PDCD4) and antiproliferative (BTG2) proteins. To characterize the role of miR-21 in vivo, empty vector- and antagomiR-21-transduced B16 melanoma cells were injected via tail vein into syngeneic C57BL/6 mice. Although empty vector-transduced B16 cells produced large lung metastases, miR-21 knockdown cells only formed small lung lesions. Importantly, miR-21 knockdown tumor-bearing mice exhibited prolonged survival compared with empty vector tumor-bearing mice. Thus, miR-21 regulates the metastatic behavior of B16 melanoma cells by promoting cell proliferation, survival, and migration/invasion as well as by suppressing IFN action, providing important new insights into the role of miR-21 in melanoma.


Experimental Cell Research | 1979

Interferon effects on the growth and division of human fibroblasts.

Lawrence M. Pfeffer; James S. Murphy; Igor Tamm

Abstract The overall rate of proliferation of human fibroblasts in culture is reduced at interferon concentrations greater than 40 international reference units (U)/ml. Inhibition is near maximal at 640 U/ml, at which concentration the doubling time between 24 and 72 h after beginning of treatment is increased 2–3 times over the control value. Inhibition of cell proliferation was not readily reversible upon removal of interferon and refeeding of cultures. Study of the mitotic behavior of individual cells showed that the first intermitotic interval after beginning of treatment with interferon (640 U/ml) was prolonged in about two-thirds of the cells. In this fraction, many cells failed to divide again after the second post-treatment mitosis, while others exhibited a progressively increasing intermitotic interval with subsequent divisions. One-third of the interferon-treated fibroblasts initially divided at a rate similar to the rate of proliferation of control cells, but subsequently these cells also slowed down and finally stopped dividing. After treatment at 640 U/ml for 3 days, the rates of DNA, RNA, and protein synthesis were depressed to 86, 75, and 64% of control values, respectively. However, the interferon-treated fibroblasts had grown larger than control cells as indicated by the following parameters: cell attachment area, 165%; volume, 131%; DNA content, 130% and protein content, 150%. Thus, interferon does not prevent cell growth, but interferes with cell division.


Journal of Biological Chemistry | 2012

DNA Damage Induces NF-κB-dependent MicroRNA-21 Up-regulation and Promotes Breast Cancer Cell Invasion

Jixiao Niu; Yuling Shi; Guangyun Tan; Chuan He Yang; Meiyun Fan; Lawrence M. Pfeffer; Zhao Hui Wu

Background: DNA damage response and miRNAs have been linked to cancer progression. Results: Genotoxic drug induces up-regulation of miR-21 in a NF-κB- and STAT3-dependent manner, which correlates with enhanced breast cancer cell invasion. Conclusion: Genotoxic NF-κB activation promotes breast cancer invasion via miR-21 induction. Significance: Genotoxic NF-κB signaling pathway may serve as a drug target to reduce therapeutic resistance and metastasis in breast cancer. NF-κB activation induced by genotoxic treatment in cancer cells has been associated with therapeutic resistance in multiple human malignancies. Therapeutic resistance also correlates with high metastatic potential in human cancers, including breast cancer. Whether genotoxic treatment-activated NF-κB also contributes to cancer metastasis following radiation and chemotherapy is unclear. Here, we show that chemotherapeutic drug-induced NF-κB activation promotes breast cancer cell migration and invasion. The increased metastatic potential is dependent on IL-6 induction mediated by genotoxic NF-κB activation. Moreover, genotoxic treatment also up-regulates oncogenic microRNA-21 (miR-21) expression through eliciting NF-κB recruitment to the miR-21 promoter region, where it cooperates with signal transducer and activator of transcription 3 (STAT3) to activate miR-21 transcription. DNA damage-induced histone H3 phosphorylation via activated MSK1 creates an open chromatin structure for NF-κB/STAT3-driven transactivation of miR-21. NF-κB-dependent IL-6 up-regulation is responsible for STAT3 activation and recruitment to the miR-21 promoter upon genotoxic stress. Induction of miR-21 may enable cancer cells to elude DNA damage-induced apoptosis and enhance the metastatic potential of breast cancer cells through repressing expression of PTEN and PDCD4. Our data support a critical role of DNA damage-induced NF-κB activation in promoting cancer metastasis following genotoxic treatment, and NF-κB-dependent miR-21 induction may contribute to both therapeutic resistance and metastasis in breast cancer.


Journal of Biological Chemistry | 2013

Constitutive Activation of Signal Transducer and Activator of Transcription 3 (STAT3) and Nuclear Factor κB Signaling in Glioblastoma Cancer Stem Cells Regulates the Notch Pathway

Jo Meagan Garner; Meiyun Fan; Chuan He Yang; Ziyun Du; Michelle Sims; Andrew M. Davidoff; Lawrence M. Pfeffer

Background: Glioma cancer stem cells (CSCs) are believed to drive tumorigenesis. Results: Glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and the Notch pathway. Conclusion: A novel relationship between glioma CSCs and the Notch pathway is defined, involving the constitutive activation of STAT3 and NF-κB signaling. Significance: The STAT3, NF-κB, and Notch pathways provide novel therapeutic targets to treat glioma. Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.


Journal of Biological Chemistry | 2007

Role of the JAK/STAT Pathway in the Regulation of Interleukin-8 Transcription by Oxidized Phospholipids in Vitro and in Atherosclerosis in Vivo

Nima M. Gharavi; Jackelyn A. Alva; Kevin P. Mouillesseaux; Chi Lai; Michael Yeh; Winnie Yeung; Jaclyn Johnson; Wan Lam Szeto; Longsheng Hong; Michael C. Fishbein; Lai Wei; Lawrence M. Pfeffer; Judith A. Berliner

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and its component phospholipid, 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine, induce endothelial cells (EC) to synthesize chemotactic factors, such as interleukin 8 (IL-8). Previously, we demonstrated a role for c-Src kinase activation in Ox-PAPC-induced IL-8 transcription. In this study, we have examined the mechanism regulating IL-8 transcription by Ox-PAPC downstream of c-Src. Our findings demonstrate an important role for JAK2 in the regulation of IL-8 transcription by Ox-PAPC. Treatment of human aortic EC with Ox-PAPC and 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine induced a rapid yet sustained activation of JAK2; activation of JAK2 by Ox-PAPC was dependent on c-Src kinase activity. Furthermore, pretreatment with selective JAK2 inhibitors significantly reduced Ox-PAPC-induced IL-8 transcription. In previous studies, we also demonstrated activation of STAT3 by Ox-PAPC. Here we provide evidence that STAT3 activation by Ox-PAPC is dependent on JAK2 activation and that STAT3 activation regulates IL-8 transcription by Ox-PAPC in human EC. Transfection with small interfering RNA against STAT3 significantly reduced Ox-PAPC-induced IL-8 transcription. Using chromatin immunoprecipitation assays, we demonstrated binding of activated STAT3 to the sequence flanking the consensus γ-interferon activation sequence (GAS) in the IL-8 promoter; site-directed mutagenesis of GAS inhibited IL-8 transcription by Ox-PAPC. Finally, these studies demonstrate a role for STAT3 activation in atherosclerosis in vivo. We found increased staining for activated STAT3 in the inflammatory regions of human atherosclerotic lesions and reduced fatty streak formation in EC-specific STAT3 knock-out mice on the atherogenic diet. Taken together, these data demonstrate an important role for the JAK2/STAT3 pathway in Ox-PAPC-induced IL-8 transcription in vitro and in atherosclerosis in vivo.


Journal of Biological Chemistry | 2006

NFκB Negatively Regulates Interferon-induced Gene Expression and Anti-influenza Activity

Lai Wei; Matthew R. Sandbulte; Paul G. Thomas; Richard J. Webby; Ramin Homayouni; Lawrence M. Pfeffer

Interferons (IFNs) are antiviral cytokines that selectively regulate gene expression through several signaling pathways including nuclear factor κB(NFκB). To investigate the specific role of NFκB in IFN signaling, we performed gene expression profiling after IFN treatment of embryonic fibroblasts derived from normal mice or mice with targeted deletion of NFκB p50 and p65 genes. Interestingly, several antiviral and immunomodulatory genes were induced higher by IFN in NFκB knock-out cells. Chromatin immunoprecipitation experiments demonstrated that NFκB was basally bound to the promoters of these genes, while IFN treatment resulted in the recruitment of STAT1 and STAT2 to these promoters. However, in NFκB knock-out cells IFN induced STAT binding as well as the binding of the IFN regulatory factor-1 (IRF1) to the IFN-stimulated gene (ISG) promoters. IRF1 binding closely correlated with enhanced gene induction. Moreover, NFκB suppressed both antiviral and immunomodulatory actions of IFN against influenza virus. Our results identify a novel negative regulatory role of NFκB in IFN-induced gene expression and biological activities and suggest that modulating NFκB activity may provide a new avenue for enhancing the therapeutic effectiveness of IFN.


Molecular and Cellular Biology | 1991

v-Src increases diacylglycerol levels via a type D phospholipase-mediated hydrolysis of phosphatidylcholine.

Jianguo Song; Lawrence M. Pfeffer

Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.

Collaboration


Dive into the Lawrence M. Pfeffer's collaboration.

Top Co-Authors

Avatar

Chuan He Yang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Meiyun Fan

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Susan R. Pfeffer

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Igor Tamm

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Junming Yue

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Aruna Murti

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ziyun Du

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Davidoff

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michelle Sims

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Chuanhe Yang

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge