Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guennadi Sezonov is active.

Publication


Featured researches published by Guennadi Sezonov.


Open Biology | 2013

Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon

Carole Jaubert; Chloë Danioux; Jacques Oberto; Diego Cortez; Ariane Bize; Mart Krupovic; Qunxin She; Patrick Forterre; David Prangishvili; Guennadi Sezonov

The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin–antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus–host interactions and the CRISPR/Cas defence mechanism in Archaea.


Nucleic Acids Research | 2006

A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters

Alexandra Kessler; Guennadi Sezonov; J. Iñaki Guijarro; Nicole Desnoues; Thierry Rose; Muriel Delepierre; Stephen D. Bell; David Prangishvili

While studying gene expression of the rudivirus SIRV1 in cells of its host, the hyperthermophilic crenarchaeon Sulfolobus, a novel archaeal transcriptional regulator was isolated. The 14 kDa protein, termed Sulfolobus transcription activator 1, Sta1, is encoded on the host chromosome. Its activating effect on transcription initiation from viral promoters was demonstrated in in vitro transcription experiments using a reconstituted host system containing the RNA polymerase, TATA-binding protein (TBP) and transcription factor B (TFB). Most pronounced activation was observed at low concentrations of either of the two transcription factors, TBP or TFB. Sta1 was able to bind viral promoters independently of any component of the host pre-initiation complex. Two binding sites were revealed by footprinting, one located in the core promoter region and the second ∼30 bp upstream of it. Comparative modeling, NMR and circular dichroism of Sta1 indicated that the protein contained a winged helix–turn–helix motif, most probably involved in DNA binding. This strategy of the archaeal virus to co-opt a host cell regulator to promote transcription of its genes resembles eukaryal virus–host relationships.


PLOS Genetics | 2010

Evidence for a Xer/dif System for Chromosome Resolution in Archaea

Diego Cortez; Sophie Quevillon-Cheruel; Simonetta Gribaldo; Nicole Desnoues; Guennadi Sezonov; Patrick Forterre; Marie-Claude Serre

Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.


Journal of Biological Chemistry | 2009

Structure, Function, and Targets of the Transcriptional Regulator SvtR from the Hyperthermophilic Archaeal Virus SIRV1

Florence Guillière; Nuno Peixeiro; Alexandra Kessler; Bertrand Raynal; Nicole Desnoues; Jenny Keller; Muriel Delepierre; David Prangishvili; Guennadi Sezonov; J. Iñaki Guijarro

We have characterized the structure and the function of the 6.6-kDa protein SvtR (formerly called gp08) from the rod-shaped virus SIRV1, which infects the hyperthermophilic archaeon Sulfolobus islandicus that thrives at 85 °C in hot acidic springs. The protein forms a dimer in solution. The NMR solution structure of the protein consists of a ribbon-helix-helix (RHH) fold between residues 13 and 56 and a disordered N-terminal region (residues 1–12). The structure is very similar to that of bacterial RHH proteins despite the low sequence similarity. We demonstrated that the protein binds DNA and uses its β-sheet face for the interaction like bacterial RHH proteins. To detect all the binding sites on the 32.3-kb SIRV1 linear genome, we designed and performed a global genome-wide search of targets based on a simplified electrophoretic mobility shift assay. Four targets were recognized by the protein. The strongest binding was observed with the promoter of the gene coding for a virion structural protein. When assayed in a host reconstituted in vitro transcription system, the protein SvtR (Sulfolobus virus transcription regulator) repressed transcription from the latter promoter, as well as from the promoter of its own gene.


Biochemical Society Transactions | 2013

Cis -regulatory logic in archaeal transcription

Eveline Peeters; Nuno Peixeiro; Guennadi Sezonov

For cellular fitness and survival, gene expression levels need to be regulated in response to a wealth of cellular and environmental signals. TFs (transcription factors) execute a large part of this regulation by interacting with the basal transcription machinery at promoter regions. Archaea are characterized by a simplified eukaryote-like basal transcription machinery and bacteria-type TFs, which convert sequence information into a gene expression output according to cis-regulatory rules. In the present review, we discuss the current state of knowledge about these rules in archaeal systems, ranging from DNA-binding specificities and operator architecture to regulatory mechanisms.


Nucleic Acids Research | 2014

A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2

Sukhvinder Gill; Mart Krupovic; Nicole Desnoues; Pierre Béguin; Guennadi Sezonov; Patrick Forterre

We report the characterization of a DNA primase/polymerase protein (PolpTN2) encoded by the pTN2 plasmid from Thermococcus nautilus. Sequence analysis revealed that this protein corresponds to a fusion between an N-terminal domain homologous to the small catalytic subunit PriS of heterodimeric archaeal and eukaryotic primases (AEP) and a C-terminal domain related to their large regulatory subunit PriL. This unique domain configuration is not found in other virus- and plasmid-encoded primases in which PriS-like domains are typically fused to different types of helicases. PolpTN2 exhibited primase, polymerase and nucleotidyl transferase activities and specifically incorporates dNTPs, to the exclusion of rNTPs. PolpTN2 could efficiently prime DNA synthesis by the T. nautilus PolB DNA polymerase, suggesting that it is used in vivo as a primase for pTN2 plasmid replication. The N-terminal PriS-like domain of PolpTN2 exhibited all activities of the full-length enzyme but was much less efficient in priming cellular DNA polymerases. Surprisingly, the N-terminal domain possesses reverse transcriptase activity. We speculate that this activity could reflect an ancestral function of AEP proteins in the transition from the RNA to the DNA world.


PLOS ONE | 2013

Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

Florence Guillière; Chloë Danioux; Carole Jaubert; Nicole Desnoues; Muriel Delepierre; David Prangishvili; Guennadi Sezonov; J. Iñaki Guijarro

While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.


Biologie Aujourd'hui | 2013

Énigmatiques virus d’archées

Ariane Bize; Guennadi Sezonov; David Prangishvili

Viruses infecting microorganisms of the third domain of life, Archaea, are still poorly characterized: to date, only about fifty of these viruses have been isolated. Their hosts are hyperthermophilic, acidothermophilic, and extreme halophilic or methanogenic archaea. Their morphotypes are highly diverse and their gene content is very specific. Some of these viruses have developed extraordinary mechanisms to open the cell wall thanks to the formation of exceptional pyramidal nanostructures. The still limited knowledge about the biology of archaeoviruses should develop rapidly in the coming years.


Archive | 2014

model hyperthermophilic archaeon

Patrick Forterre; David Prangishvili; Guennadi Sezonov; Carole Jaubert; Jacques Oberto; Diego Cortez; Ariane Bize


Journal of Back and Musculoskeletal Rehabilitation | 2013

Solution structure of the zinc finger AFV1p06 protein from the hyperthermophilic archaeal virus AFV1

Florence Guillière; Guennadi Sezonov; David Prangishvili; Muriel Delepierre; J. Iñaki Guijarro

Collaboration


Dive into the Guennadi Sezonov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge