Patrick Forterre
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Forterre.
Nature | 2008
Bernard La Scola; Christelle Desnues; Isabelle Pagnier; Catherine Robert; Lina Barrassi; Ghislain Fournous; Michèle Merchat; Marie Suzan-Monti; Patrick Forterre; Eugene V. Koonin; Didier Raoult
Viruses are obligate parasites of Eukarya, Archaea and Bacteria. Acanthamoeba polyphaga mimivirus (APMV) is the largest known virus; it grows only in amoeba and is visible under the optical microscope. Mimivirus possesses a 1,185-kilobase double-stranded linear chromosome whose coding capacity is greater than that of numerous bacteria and archaea. Here we describe an icosahedral small virus, Sputnik, 50 nm in size, found associated with a new strain of APMV. Sputnik cannot multiply in Acanthamoeba castellanii but grows rapidly, after an eclipse phase, in the giant virus factory found in amoebae co-infected with APMV. Sputnik growth is deleterious to APMV and results in the production of abortive forms and abnormal capsid assembly of the host virus. The Sputnik genome is an 18.343-kilobase circular double-stranded DNA and contains genes that are linked to viruses infecting each of the three domains of life Eukarya, Archaea and Bacteria. Of the 21 predicted protein-coding genes, eight encode proteins with detectable homologues, including three proteins apparently derived from APMV, a homologue of an archaeal virus integrase, a predicted primase–helicase, a packaging ATPase with homologues in bacteriophages and eukaryotic viruses, a distant homologue of bacterial insertion sequence transposase DNA-binding subunit, and a Zn-ribbon protein. The closest homologues of the last four of these proteins were detected in the Global Ocean Survey environmental data set, suggesting that Sputnik represents a currently unknown family of viruses. Considering its functional analogy with bacteriophages, we classify this virus as a virophage. The virophage could be a vehicle mediating lateral gene transfer between giant viruses.
Nature Reviews Microbiology | 2006
David Prangishvili; Patrick Forterre; Roger A. Garrett
DNA viruses of the Archaea have highly diverse and often exceptionally complex morphotypes. Many have been isolated from geothermally heated hot environments, raising intriguing questions about their origins, and contradicting the widespread notion of limited biodiversity in extreme environments. Here, we provide a unifying view on archaeal viruses, and present them as a particular assemblage that is fundamentally different in morphotype and genome from the DNA viruses of the other two domains of life, the Bacteria and Eukarya.
Journal of Molecular Evolution | 1999
Hervé Philippe; Patrick Forterre
Abstract. Several composite universal trees connected by an ancestral gene duplication have been used to root the universal tree of life. In all cases, this root turned out to be in the eubacterial branch. However, the validity of results obtained from comparative sequence analysis has recently been questioned, in particular, in the case of ancient phylogenies. For example, it has been shown that several eukaryotic groups are misplaced in ribosomal RNA or elongation factor trees because of unequal rates of evolution and mutational saturation. Furthermore, the addition of new sequences to data sets has often turned apparently reasonable phylogenies into confused ones. We have thus revisited all composite protein trees that have been used to root the universal tree of life up to now (elongation factors, ATPases, tRNA synthetases, carbamoyl phosphate synthetases, signal recognition particle proteins) with updated data sets. In general, the two prokaryotic domains were not monophyletic with several aberrant groupings at different levels of the tree. Furthermore, the respective phylogenies contradicted each others, so that various ad hoc scenarios (paralogy or lateral gene transfer) must be proposed in order to obtain the traditional Archaebacteria–Eukaryota sisterhood. More importantly, all of the markers are heavily saturated with respect to amino acid substitutions. As phylogenies inferred from saturated data sets are extremely sensitive to differences in evolutionary rates, present phylogenies used to root the universal tree of life could be biased by the phenomenon of long branch attraction. Since the eubacterial branch was always the longest one, the eubacterial rooting could be explained by an attraction between this branch and the long branch of the outgroup. Finally, we suggested that an eukaryotic rooting could be a more fruitful working hypothesis, as it provides, for example, a simple explanation to the high genetic similarity of Archaebacteria and Eubacteria inferred from complete genome analysis.
BioEssays | 1999
Patrick Forterre; Hervé Philippe
The currently accepted universal tree of life based on molecular phylogenies is characterised by a prokaryotic root and the sisterhood of archaea and eukaryotes. The recent discovery that each domain (bacteria, archaea, and eucarya) represents a mosaic of the two others in terms of its gene content has suggested various alternatives in which eukaryotes were derived from the merging of bacteria and archaea. In all these scenarios, life evolved from simple prokaryotes to complex eukaryotes. We argue here that these models are biased by overconfidence in molecular phylogenies and prejudices regarding the primitive nature of prokaryotes. We propose instead a universal tree of life with the root in the eukaryotic branch and suggest that many prokaryotic features of the information processing mechanisms originated by simplification through gene loss and non-orthologous displacement.
Molecular Microbiology | 2003
Georges N. Cohen; Valérie Barbe; Didier Flament; Michael Y. Galperin; Roland Heilig; Odile Lecompte; Olivier Poch; Daniel Prieur; Joël Querellou; Raymond Ripp; Jean-Claude Thierry; John van der Oost; Jean Weissenbach; Yvan Zivanovic; Patrick Forterre
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re‐annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.
Current Opinion in Microbiology | 2011
Céline Brochier-Armanet; Patrick Forterre; Simonetta Gribaldo
Little more than 30 years since the discovery of the Archaea, over one hundred archaeal genome sequences are now publicly available, of which ∼40% have been released in the last two years. Their analysis provides an increasingly complex picture of archaeal phylogeny and evolution with the proposal of new major phyla, such as the Thaumarchaeota, and important information on the evolution of key central cellular features such as cell division. Insights have been gained into the events and processes in archaeal evolution, with a number of additional and unexpected links to the Eukaryotes revealed. Taken together, these results predict that many more surprises will be found as new archaeal genomes are sequenced.
Trends in Genetics | 2002
Patrick Forterre
I have looked for proteins that are present in all hyperthermophile genomes, but absent from all mesophile or thermophile genomes by using the phylogenetic pattern search program of the COG database. Surprisingly, this search retrieved only one such hyperthermophile-specific protein: reverse gyrase. This result emphasizes the importance of reverse gyrase in the adaptation of life to very high temperatures, and strengthens the idea that evolution of this enzyme was crucial in the origin of hyperthermophiles.
Genome Biology | 2005
Céline Brochier; Simonetta Gribaldo; Yvan Zivanovic; Fabrice Confalonieri; Patrick Forterre
BackgroundCultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as the representative of a new phylum - the Nanoarchaeota - that would have diverged before the Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus crucial for deciphering the history of the archaeal domain.ResultsWe tested the placement of N. equitans in the archaeal phylogeny using a large dataset of concatenated ribosomal proteins from 25 archaeal genomes. We indicate that the placement of N. equitans in archaeal phylogenies on the basis of ribosomal protein concatenation may be strongly biased by the coupled effect of its above-average evolutionary rate and lateral gene transfers. Indeed, we show that different subsets of ribosomal proteins harbor a conflicting phylogenetic signal for the placement of N. equitans. A BLASTP-based survey of the phylogenetic pattern of all open reading frames (ORFs) in the genome of N. equitans revealed a surprisingly high fraction of close hits with Euryarchaeota, notably Thermococcales. Strikingly, a specific affinity of N. equitans and Thermococcales was strongly supported by phylogenies based on a subset of ribosomal proteins, and on a number of unrelated molecular markers.ConclusionWe suggest that N. equitans may more probably be the representative of a fast-evolving euryarchaeal lineage (possibly related to Thermococcales) than the representative of a novel and early diverging archaeal phylum.
Cell | 1996
Patrick Forterre
The nature of hyperthermophiles and of the LCA are exciting questions that can now be addressed by a combination of experimental work and sound hypotheses. The hypothesis of a hyperthermophilic LCA is taken for granted in many recent papers, but the question is far from resolved and the notion of hyperthermophiles as marvels of adaptation is on the rise. Regardless of the correct scenario, hyperthermophiles have already taught us that life can exist in places that biologists would have predicted to be sterile two decades ago. Since hyperthermophiles might predate the most ancient cyanobacterial-like microfossils that are 3.5 billions years old, they also teach us that life has evolved to the extreme in a very short time.
Journal of Molecular Evolution | 1993
Nadia Benachenhou-Lahfa; Patrick Forterre; Bernard Labedan
SummaryThe existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family 1) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family 11) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotesin distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the firmness of the presently accepted interpretation of previous protein trees which were supposed to root unambiguously the universal tree of life and place the archaebacteria in this tree.