Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guenter Daum is active.

Publication


Featured researches published by Guenter Daum.


Circulation Research | 2005

Platelet-Derived Growth Factor-BB–Induced Human Smooth Muscle Cell Proliferation Depends on Basic FGF Release and FGFR-1 Activation

Esther Millette; Bernhard Rauch; Olivier Defawe; Richard D. Kenagy; Guenter Daum; Alexander W. Clowes

We have shown that the G protein–coupled receptor (GPCR) agonists, thrombin and Factor Xa, stimulate smooth muscle cell (SMC) proliferation through transactivation of the EGF receptor (EGFR) or the FGF receptor (FGFR), both of which are tyrosine kinase receptors. In the present study, we investigated whether platelet-derived growth factor (PDGF), a tyrosine kinase receptor agonist, might transactivate another tyrosine kinase receptor to induce SMC proliferation. Because heparin inhibits PDGF-mediated proliferation in human SMCs, we investigated whether the heparin-binding growth factor basic fibroblast growth factor (bFGF) and one of its receptors, FGFR-1, play a role in the response of human arterial SMCs to PDGF-BB. PDGF-BB induced the release of bFGF and sustained phosphorylation of FGFR-1 (30 minutes to 6 hours). A bFGF-neutralizing antibody inhibited PDGF-BB–mediated phosphorylation of FGFR-1, DNA synthesis, and cell proliferation. In the presence of bFGF antibody, PDGF-BB–induced early activation of ERK (0 to 60 minutes) was not affected, whereas late ERK activation (2 to 4 hours) was reduced. When FGFR-1 expression was suppressed using small interfering RNA (siRNA), ERK activation was reduced at late, but not early, time points after PDGF-BB stimulation. Addition of bFGF antibody to cells treated with siRNA to FGFR-1 had no further effect on ERK activation. Our results provide support for a novel mechanism by which PDGF-BB induces the release of bFGF and activation of FGFR-1 followed by the sustained activation of ERK and proliferation of human SMCs.


Journal of Vascular Research | 1999

Angiostatin Diminishes Activation of the Mitogen-Activated Protein Kinases ERK-1 and ERK-2 in Human Dermal Microvascular Endothelial Cells

Alexander Redlitz; Guenter Daum; E. Helene Sage

Angiostatin is an endogenous inhibitor of angiogenesis that was isolated from tumor-bearing mice. It has been established that angiostatin inhibits endothelial cell proliferation; however, the underlying mechanisms remain to be elucidated. Here we report that angiostatin reduces transiently the phosphorylation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular cells, but not in human vascular smooth muscle cells or human dermal fibroblasts. We demonstrate that angiostatin diminishes ERK activation by basic fibroblast growth factor and vascular endothelial growth factor. Dephosphorylation of ERK and other tyrosine-phosphorylated proteins was blocked by pretreatment of the cells with sodium meta-vanadate, an inhibitor of protein tyrosine phosphatases, indicating that angiostatin signaling may require the activity of a tyrosine phosphatase. Concentrations of angiostatin that inhibited ERK activation also inhibited basic fibroblast growth factor-stimulated collagen gel invasion by endothelial cells, but did not affect endothelial cell proliferation. We thus show that angiostatin inhibits primarily the invasion of endothelial cells and exerts minimal (if any) effects on their proliferation. Invasion is a process that involves proteolysis, adhesion and migration, all of which have been linked to ERK signaling.


Journal of Thrombosis and Haemostasis | 2011

Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation.

T. Ulrych; A. Böhm; Amin Polzin; Guenter Daum; Rolf M. Nüsing; Gerd Geisslinger; T. Hohlfeld; Karsten Schrör; B. H. Rauch

Summary.  Background: Platelets release the immune‐modulating lipid sphingosine‐1‐phosphate (S1P). However, the mechanisms of platelet S1P secretion are not fully understood. Objectives: The present study investigates the function of thromboxane (TX) for platelet S1P secretion during platelet activation and the consequences for monocyte chemotaxis. Methods: S1P was detected using thin‐layer chromatography in [3H]sphingosine‐labeled platelets and by mass spectrometry. Monocyte migration was measured in modified Boyden chamber chemotaxis assays. Results: Release of S1P from platelets was stimulated with protease‐activated receptor‐1‐activating peptide (PAR‐1‐AP, 100 μm). Acetylsalicylic acid (ASA) and two structurally unrelated reversible cyclooxygenase inhibitors diclofenac and ibuprofen suppressed S1P release. Oral ASA (500‐mg single dose or 100 mg over 3 days) attenuated S1P release from platelets in healthy human volunteers ex vivo. This was paralleled by inhibition of TX formation. S1P release was increased by the TX receptor (TP) agonist U‐46619, and inhibited by the TP antagonist ramatroban and by inhibitors of ABC‐transport. Furthermore, thrombin‐induced release of S1P was attenuated in platelets from TP‐deficient mice. Supernatants from PAR‐1‐AP‐stimulated human platelets increased the chemotactic capacity of human peripheral monocytes in a S1P‐dependent manner via S1P receptors‐1 and ‐3. These effects were inhibited by ASA‐pretreatment of platelets. Conclusions: TX synthesis and TP activation mediate S1P release after thrombin receptor activation. Inhibition of this pathway may contribute to the anti‐inflammatory actions of ASA, for example by affecting activity of monocytes at sites of vascular injury.


Circulation Research | 2004

Thrombin- and Factor Xa-Induced DNA Synthesis Is Mediated by Transactivation of Fibroblast Growth Factor Receptor-1 in Human Vascular Smooth Muscle Cells

Bernhard Rauch; Esther Millette; Richard D. Kenagy; Guenter Daum; Alexander W. Clowes

Abstract— Thrombin and factor Xa (FXa) are agonists for G protein–coupled receptors (GPRCs) and may contribute to vascular lesion formation by stimulating proliferation of vascular smooth muscle cells (SMCs). Mitogenic signaling of GPCRs requires transactivation of receptor tyrosine kinases (RTKs). In rat SMCs, thrombin transactivates the epidermal growth factor receptor (EGFR) via a pathway that involves heparin-binding EGF-like growth factor (HB-EGF) as ligand for EGFR. The purpose of this study was to investigate in human SMCs the role of receptor transactivation in the mitogenic response to thrombin and FXa. Thrombin (10 nmol/L) and FXa (100 nmol/L) cause a 3.3- and 2.6-fold increase in DNA synthesis, respectively. In human SMCs, neither thrombin nor FXa causes EGFR phosphorylation, and blockade of EGFR kinase does not inhibit DNA synthesis. However, DNA synthesis and phosphorylation of fibroblast growth factor receptor-1 (FGFR-1) induced by thrombin or FXa are inhibited by antibodies neutralizing basic fibroblast growth factor (bFGF) or by heparin. Hirudin inhibits thrombin-, but not FXa-induced mitogenesis, indicating that FXa acts independently of thrombin. We further demonstrate by ELISA that upon thrombin and FXa stimulation, bFGF is released and binds to the extracellular matrix. Our data suggest that in human vascular SMCs, both thrombin and FXa rapidly release bFGF into the pericellular matrix. This is followed by transactivation of the FGFR-1 and increased proliferation. Heparin may inhibit the mitogenic effects of thrombin and FXa in human SMCs by preventing bFGF binding to FGFR-1.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Reduced NO-cGMP Signaling Contributes to Vascular Inflammation and Insulin Resistance Induced by High-Fat Feeding

Norma O. Rizzo; Ezekiel Maloney; Matilda Pham; Ian Luttrell; Hunter Wessells; Sanshiro Tateya; Guenter Daum; Priya Handa; Michael W. Schwartz; Francis Kim

Objective—Diet-induced obesity (DIO) in mice causes vascular inflammation and insulin resistance that are accompanied by decreased endothelial-derived NO production. We sought to determine whether reduced NO-cGMP signaling contributes to the deleterious effects of DIO on the vasculature and, if so, whether these effects can be blocked by increased vascular NO-cGMP signaling. Methods and Results—By using an established endothelial cell culture model of insulin resistance, exposure to palmitate, 100 &mgr;mol/L, for 3 hours induced both cellular inflammation (activation of IKK&bgr;–nuclear factor-&kgr;B) and impaired insulin signaling via the insulin receptor substrate–phosphatidylinositol 3-kinase pathway. Sensitivity to palmitate-induced endothelial inflammation and insulin resistance was increased when NO signaling was reduced using an endothelial NO synthase inhibitor, whereas endothelial responses to palmitate were blocked by pretreatment with either an NO donor or a cGMP analogue. To investigate whether endogenous NO-cGMP signaling protects against vascular responses to nutrient excess in vivo, adult male mice lacking endothelial NO synthase were studied. As predicted, both vascular inflammation (phosphorylated I&kgr;B&agr; and intercellular adhesion molecule levels) and insulin resistance (phosphorylated Akt [pAkt] and phosphorylated eNOS [peNOS] levels) were increased in endothelial NO synthase−/− (eNOS−/−) mice, reminiscent of the effect of DIO in wild-type controls. Next, we asked whether the vascular response to DIO in wild-type mice can be reversed by a pharmacological increase of cGMP signaling. C57BL6 mice were either fed a high-fat diet or remained on a low-fat diet for 8 weeks. During the final 2 weeks of the study, mice on each diet received either placebo or the phosphodiesterase-5 inhibitor sildenafil, 10 mg/kg per day orally. In high-fat diet–fed mice, vascular inflammation and insulin resistance were completely prevented by sildenafil administration at a dose that had no effect in mice fed the low-fat diet. Conclusion—Reduced signaling via the NO-cGMP pathway is a mediator of vascular inflammation and insulin resistance during overnutrition induced by high-fat feeding. Therefore, phosphodiesterase-5, soluble guanylyl cyclase, and other molecules in the NO-cGMP pathway (eg, protein kinase G) constitute potential targets for the treatment of vascular dysfunction in the setting of obesity.


Journal of Biological Chemistry | 2005

Syndecan-4 is required for thrombin-induced migration and proliferation in human vascular smooth muscle cells.

Bernhard Rauch; Esther Millette; Richard D. Kenagy; Guenter Daum; Jens W. Fischer; Alexander W. Clowes

Thrombin is a mitogen and chemoattractant for vascular smooth muscle cells (SMCs) and may contribute to vascular lesion formation. We have previously shown that human SMCs, when stimulated with thrombin, release basic fibroblast growth factor (bFGF), causing phosphorylation of FGF receptor-1 (FGFR-1). Treatment with bFGF-neutralizing antibodies (anti-bFGF) or heparin inhibits thrombin-induced DNA synthesis. We concluded that thrombin may stimulate entry into the cell cycle via bFGF release and FGFR-1 activation. In the present study, we demonstrate a requirement for not only FGFR-1 but also syndecan-4, a transmembrane heparan-sulfate proteoglycan. Inhibition of syndecan-4 expression using small interfering RNA (siRNA) resulted in reduced DNA synthesis by human SMCs after stimulation with thrombin (10 nmol/liter). Anti-bFGF antibody, which inhibits DNA synthesis in control cells, had no inhibitory effect when syndecan-4 expression was reduced by siRNA. Thrombin- or bFGF-induced SMC migration, determined in Boyden chamber assays, was reduced in cells treated with syndecan-4 or FGFR-1 siRNA or by anti-bFGF. Thrombin induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in a biphasic pattern. Although thrombin-mediated ERK phosphorylation at 5 min was not affected by syndecan-4 or FGFR-1 siRNA, ERK phosphorylation at later time points was reduced. We conclude that thrombin-released bFGF binds to syndecan-4 and FGFR-1, which is required for thrombin-induced mitogenesis and migration.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Reduced Vascular Nitric Oxide–cGMP Signaling Contributes to Adipose Tissue Inflammation During High-Fat Feeding

Priya Handa; Sanshiro Tateya; Norma O. Rizzo; Andrew M. Cheng; Vicki Morgan-Stevenson; Chang Yeop Han; Alexander W. Clowes; Guenter Daum; Kevin D. O'Brien; Michael W. Schwartz; Alan Chait; Francis Kim

Objective—Obesity is characterized by chronic inflammation of adipose tissue, which contributes to insulin resistance and diabetes. Although nitric oxide (NO) signaling has antiinflammatory effects in the vasculature, whether reduced NO contributes to adipose tissue inflammation is unknown. We sought to determine whether (1) obesity induced by high-fat (HF) diet reduces endothelial nitric oxide signaling in adipose tissue, (2) reduced endothelial nitric oxide synthase (eNOS) signaling is sufficient to induce adipose tissue inflammation independent of diet, and (3) increased cGMP signaling can block adipose tissue inflammation induced by HF feeding. Methods and Results—Relative to mice fed a low-fat diet, an HF diet markedly reduced phospho-eNOS and phospho-vasodilator-stimulated phosphoprotein (phospho-VASP), markers of vascular NO signaling. Expression of proinflammatory cytokines was increased in adipose tissue of eNOS−/− mice. Conversely, enhancement of signaling downstream of NO by phosphodiesterase-5 inhibition using sildenafil attenuated HF-induced proinflammatory cytokine expression and the recruitment of macrophages into adipose tissue. Finally, we implicate a role for VASP, a downstream mediator of NO-cGMP signaling in mediating eNOS-induced antiinflammatory effects because VASP−/− mice recapitulated the proinflammatory phenotype displayed by eNOS−/− mice. Conclusion—These results imply a physiological role for endothelial NO to limit obesity-associated inflammation in adipose tissue and hence identify the NO-cGMP-VASP pathway as a potential therapeutic target in the treatment of diabetes.


Diabetes | 2011

Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding

Sanshiro Tateya; Norma O. Rizzo; Priya Handa; Andrew M. Cheng; Vicki Morgan-Stevenson; Guenter Daum; Alexander W. Clowes; Gregory J. Morton; Michael W. Schwartz; Francis Kim

OBJECTIVE Proinflammatory activation of Kupffer cells is implicated in the effect of high-fat feeding to cause liver insulin resistance. We sought to determine whether reduced endothelial nitric oxide (NO) signaling contributes to the effect of high-fat feeding to increase hepatic inflammatory signaling and if so, whether this effect 1) involves activation of Kupffer cells and 2) is ameliorated by increased NO signaling. RESEARCH DESIGN AND METHODS Effect of NO/cGMP signaling on hepatic inflammation and on isolated Kupffer cells was examined in C57BL/6 mice, eNos−/− mice, and Vasp−/− mice fed a low-fat or high-fat diet. RESULTS We show that high-fat feeding induces proinflammatory activation of Kupffer cells in wild-type mice coincident with reduced liver endothelial nitric oxide synthase activity and NO content while, conversely, enhancement of signaling downstream of endogenous NO by phosphodiesterase-5 inhibition protects against high fat–induced inflammation in Kupffer cells. Furthermore, proinflammatory activation of Kupffer cells is evident in eNos−/− mice even on a low-fat diet. Targeted deletion of vasodilator-stimulated phosphoprotein (VASP), a key downstream target of endothelially derived NO, similarly predisposes to hepatic and Kupffer cell inflammation and abrogates the protective effect of NO signaling in both macrophages and hepatocytes studied in a cell culture model. CONCLUSIONS These results collectively imply a physiological role for endothelial NO to limit obesity-associated inflammation and insulin resistance in hepatocytes and support a model in which Kupffer cell activation during high-fat feeding is dependent on reduced NO signaling. Our findings also identify the NO/VASP pathway as a novel potential target for the treatment of obesity-associated liver insulin resistance.


Critical Care | 2015

Decreased serum concentrations of sphingosine-1-phosphate in sepsis

Martin Sebastian Winkler; Axel Nierhaus; Maximilian Holzmann; Eileen Mudersbach; Antonia Bauer; Linda Robbe; Corinne Zahrte; Maria Geffken; Sven Peine; Edzard Schwedhelm; Guenter Daum; Stefan Kluge; Christian Zoellner

IntroductionSphingosine-1-phosphate (S1P) is a signaling lipid that regulates pathophysiological processes involved in sepsis progression, including endothelial permeability, cytokine release, and vascular tone. The aim of this study was to investigate whether serum-S1P concentrations are associated with disease severity in patients with sepsis.MethodsThis single-center prospective-observational study includes 100 patients with systemic inflammatory response syndrome (SIRS) plus infection (n = 40), severe sepsis (n = 30), or septic shock (n = 30) and 214 healthy blood donors as controls. Serum-S1P was measured by mass spectrometry. Blood parameters, including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), lactate, and white blood cells (WBCs), were determined by routine assays. The Sequential Organ Failure Assessment (SOFA) score was generated and used to evaluate disease severity.ResultsSerum-S1P concentrations were lower in patients than in controls (P < 0.01), and the greatest difference was between the control and the septic shock groups (P < 0.01). Serum-S1P levels were inversely correlated with disease severity as determined by the SOFA score (P < 0.01) as well as with IL-6, PCT, CRP, creatinine, lactate, and fluid balance. A receiver operating characteristic analysis for the presence or absence of septic shock revealed equally high sensitivity and specificity for S1P compared with the SOFA score. In a multivariate logistic regression model calculated for prediction of septic shock, S1P emerged as the strongest predictor (P < 0.001).ConclusionsIn patients with sepsis, serum-S1P levels are dramatically decreased and are inversely associated with disease severity. Since S1P is a potent regulator of endothelial integrity, low S1P levels may contribute to capillary leakage, impaired tissue perfusion, and organ failure in sepsis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Sphingosine-1-Phosphate Receptor-2 Regulates Expression of Smooth Muscle Alpha-Actin After Arterial Injury

Allison D. Grabski; Takuya Shimizu; Jessie Deou; William M. Mahoney; Michael A. Reidy; Guenter Daum

Objective—This study tests the hypothesis that S1P2R regulates expression of SMC differentiation genes after arterial injury. Methods and Results—Carotid ligation injury was performed in wild-type and S1P2R-null mice. At various time points after injury, expression of multiple SMC differentiation genes, myocardin, and S1P receptors (S1P1R, S1P2R, and S1P3R) was measured by quantitative PCR. These experiments demonstrate that at day 7 after injury, S1P2R specifically regulates expression of smooth muscle α-actin (SMA) and that this is not mediated by changes in expression of myocardin or any of the S1PRs. In vitro studies using carotid SMCs prepared from wild-type and S1P2R-null mice show that S1P stimulates expression of all SMC-differentiation genes tested, but S1P2R significantly regulates expression of SMA and SM22α only. Chromatin immunoprecipitation assays suggest that S1P-induced recruitment of serum response factor to the SMA promoter and enhancer largely depends on S1P2R. S1P-stimulated SMA expression requires S1P2R-dependent activation of RhoA and mobilization of calcium from intracellular stores. Chelation of calcium does not affect the activation of RhoA by S1P, whereas blockade of Rho by C3 exotoxin partially inhibits the mobilization of calcium by S1P. Conclusions—The results of this study support the hypothesis that S1P2R regulates expression of SMA after injury. We further conclude that transcriptional regulation of SMA by S1P in vitro requires S1P2R-dependent activation of RhoA and mobilization of calcium from intracellular calcium stores.

Collaboration


Dive into the Guenter Daum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Kim

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Priya Handa

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihua Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge