Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicki Morgan-Stevenson is active.

Publication


Featured researches published by Vicki Morgan-Stevenson.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Reduced Vascular Nitric Oxide–cGMP Signaling Contributes to Adipose Tissue Inflammation During High-Fat Feeding

Priya Handa; Sanshiro Tateya; Norma O. Rizzo; Andrew M. Cheng; Vicki Morgan-Stevenson; Chang Yeop Han; Alexander W. Clowes; Guenter Daum; Kevin D. O'Brien; Michael W. Schwartz; Alan Chait; Francis Kim

Objective—Obesity is characterized by chronic inflammation of adipose tissue, which contributes to insulin resistance and diabetes. Although nitric oxide (NO) signaling has antiinflammatory effects in the vasculature, whether reduced NO contributes to adipose tissue inflammation is unknown. We sought to determine whether (1) obesity induced by high-fat (HF) diet reduces endothelial nitric oxide signaling in adipose tissue, (2) reduced endothelial nitric oxide synthase (eNOS) signaling is sufficient to induce adipose tissue inflammation independent of diet, and (3) increased cGMP signaling can block adipose tissue inflammation induced by HF feeding. Methods and Results—Relative to mice fed a low-fat diet, an HF diet markedly reduced phospho-eNOS and phospho-vasodilator-stimulated phosphoprotein (phospho-VASP), markers of vascular NO signaling. Expression of proinflammatory cytokines was increased in adipose tissue of eNOS−/− mice. Conversely, enhancement of signaling downstream of NO by phosphodiesterase-5 inhibition using sildenafil attenuated HF-induced proinflammatory cytokine expression and the recruitment of macrophages into adipose tissue. Finally, we implicate a role for VASP, a downstream mediator of NO-cGMP signaling in mediating eNOS-induced antiinflammatory effects because VASP−/− mice recapitulated the proinflammatory phenotype displayed by eNOS−/− mice. Conclusion—These results imply a physiological role for endothelial NO to limit obesity-associated inflammation in adipose tissue and hence identify the NO-cGMP-VASP pathway as a potential therapeutic target in the treatment of diabetes.


Diabetes | 2011

Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding

Sanshiro Tateya; Norma O. Rizzo; Priya Handa; Andrew M. Cheng; Vicki Morgan-Stevenson; Guenter Daum; Alexander W. Clowes; Gregory J. Morton; Michael W. Schwartz; Francis Kim

OBJECTIVE Proinflammatory activation of Kupffer cells is implicated in the effect of high-fat feeding to cause liver insulin resistance. We sought to determine whether reduced endothelial nitric oxide (NO) signaling contributes to the effect of high-fat feeding to increase hepatic inflammatory signaling and if so, whether this effect 1) involves activation of Kupffer cells and 2) is ameliorated by increased NO signaling. RESEARCH DESIGN AND METHODS Effect of NO/cGMP signaling on hepatic inflammation and on isolated Kupffer cells was examined in C57BL/6 mice, eNos−/− mice, and Vasp−/− mice fed a low-fat or high-fat diet. RESULTS We show that high-fat feeding induces proinflammatory activation of Kupffer cells in wild-type mice coincident with reduced liver endothelial nitric oxide synthase activity and NO content while, conversely, enhancement of signaling downstream of endogenous NO by phosphodiesterase-5 inhibition protects against high fat–induced inflammation in Kupffer cells. Furthermore, proinflammatory activation of Kupffer cells is evident in eNos−/− mice even on a low-fat diet. Targeted deletion of vasodilator-stimulated phosphoprotein (VASP), a key downstream target of endothelially derived NO, similarly predisposes to hepatic and Kupffer cell inflammation and abrogates the protective effect of NO signaling in both macrophages and hepatocytes studied in a cell culture model. CONCLUSIONS These results collectively imply a physiological role for endothelial NO to limit obesity-associated inflammation and insulin resistance in hepatocytes and support a model in which Kupffer cell activation during high-fat feeding is dependent on reduced NO signaling. Our findings also identify the NO/VASP pathway as a novel potential target for the treatment of obesity-associated liver insulin resistance.


PLOS ONE | 2010

Extracellular BCL2 proteins are danger-associated molecular patterns that reduce tissue damage in murine models of ischemia-reperfusion injury.

Akiko Iwata; Vicki Morgan-Stevenson; Barbara R. Schwartz; Li Liu; Joan Tupper; Xiaodong Zhu; John M. Harlan; Robert K. Winn

Background Ischemia-reperfusion (I/R) injury contributes to organ dysfunction in a variety of clinical disorders, including myocardial infarction, stroke, organ transplantation, and hemorrhagic shock. Recent investigations have demonstrated that apoptosis as an important mechanism of cell death leading to organ dysfunction following I/R. Intracellular danger-associated molecular patterns (DAMPs) released during cell death can activate cytoprotective responses by engaging receptors of the innate immune system. Methodology/Principal Findings Ischemia was induced in the mouse hind limb by tourniquet or in the heart by coronary artery ligation. Reperfusion injury of skeletal or cardiac muscle was markedly reduced by intraperitoneal or subcutaneous injection of recombinant human (rh)BCL2 protein or rhBCL2-related protein A1 (BCL2A1) (50 ng/g) given prior to ischemia or at the time of reperfusion. The cytoprotective activity of extracellular rhBCL2 or rhBCL2A1 protein was mapped to the BH4 domain, as treatment with a mutant BCL2 protein lacking the BH4 domain was not protective, whereas peptides derived from the BH4 domain of BCL2 or the BH4-like domain of BCL2A1 were. Protection by extracellular rhBCL2 or rhBCL2A1 was associated with a reduction in apoptosis in skeletal and cardiac muscle following I/R, concomitant with increased expression of endogenous mouse BCL2 (mBCL2) protein. Notably, treatment with rhBCL2A1 protein did not protect mice deficient in toll-like receptor-2 (TLR2) or the adaptor protein, myeloid differentiation factor-88 (MyD88). Conclusions/Significance Treatment with cytokine-like doses of rhBCL2 or rhBCL2A1 protein or BH4-domain peptides reduces apoptosis and tissue injury following I/R by a TLR2-MyD88-dependent mechanism. These findings establish a novel extracellular cytoprotective activity of BCL2 BH4-domain proteins as potent cytoprotective DAMPs.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice.

Priya Handa; Vicki Morgan-Stevenson; Bryan D. Maliken; James E. Nelson; Shenna Washington; Mark Westerman; Matthew M. Yeh; K. Kowdley

The aim of this study was to determine the effect of iron overload in the development of nonalcoholic steatohepatitis (NASH) in a genetically obese mouse model (Lepr(db/db)). Leptin receptor-deficient mice were fed a normal or an iron-supplemented chow for 8 wk and switched to normal chow for 8 wk. All dietary iron (DI)-fed mice developed hepatic iron overload predominantly in the reticuloendothelial system. Hepatocellular ballooning injury was observed in the livers of 85% of DI mice, relative to 20% of chow-fed Lepr(db/db). Hepatic malonyldialdehyde levels and mRNA levels of antioxidant genes (Nrf2, Gpx1, and Hmox1) were significantly increased in the DI mice. Hepatic mRNA levels of mitochondrial biogenesis regulators Pgc1α, Tfam, Cox4, and Nrf1 were diminished in the DI mice. In addition, gene expression levels of cytokines (Il6, Tnfα) and several innate and adaptive immune cell markers such as Tlr4, Inos, CD11c, CD4, CD8, and Ifnγ were significantly increased in livers of the DI group. Strikingly, Nlrp3, a component of the inflammasome and Il18, a cytokine elicited by inflammasome activation, were significantly upregulated in the livers of DI mice. In addition, RAW 264.7 macrophages loaded with exogenous iron showed significantly higher levels of inflammatory markers (Inos, Tnfα, Mcp1, Tlr4). Thus dietary iron excess leads to hepatic oxidative stress, inflammasome activation, induction of inflammatory and immune mediators, hepatocellular ballooning injury, and therefore NASH in this model. Taken together, these studies indicate a multifactorial role for iron overload in the pathogenesis of NASH in the setting of obesity and metabolic syndrome.


Diabetes | 2013

VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice

Sanshiro Tateya; Norma RizzoDe Leon; Priya Handa; Andrew M. Cheng; Vicki Morgan-Stevenson; Kayoko Ogimoto; Jenny E. Kanter; Karin E. Bornfeldt; Guenter Daum; Alexander W. Clowes; Alan Chait; Francis Kim

Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP’s effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling. Overexpression of VASP in hepatocytes increased AMPK phosphorylation and fatty acid oxidation and reduced hepatocyte TG accumulation; however, these responses were suppressed in the presence of an AMPK inhibitor. Restoration of AMPK phosphorylation by administration of 5-aminoimidazole-4-carboxamide riboside in Vasp−/− mice reduced hepatic steatosis and normalized fatty acid oxidation and VLDL-TG secretion. Activation of VASP by the phosphodiesterase-5 inhibitor, sildenafil, in db/db mice reduced hepatic steatosis and increased phosphorylated (p-)AMPK and p-acetyl CoA carboxylase. In Vasp−/− mice, however, sildendafil treatment did not increase p-AMPK or reduce hepatic TG content. These studies identify a role of VASP to enhance hepatic fatty acid oxidation by activating AMPK and to promote VLDL-TG secretion from the liver.


PLOS ONE | 2011

Extracellular Administration of BCL2 Protein Reduces Apoptosis and Improves Survival in a Murine Model of Sepsis

Akiko Iwata; R. Angelo de Claro; Vicki Morgan-Stevenson; Joan Tupper; Barbara R. Schwartz; Li Liu; Xiaodong Zhu; Katherine C. Jordan; Robert K. Winn; John M. Harlan

Background Severe sepsis and septic shock are major causes of morbidity and mortality worldwide. In experimental sepsis there is prominent apoptosis of various cell types, and genetic manipulation of death and survival pathways has been shown to modulate organ injury and survival. Methodology/Principal Findings We investigated the effect of extracellular administration of two anti-apoptotic members of the BCL2 (B-cell lymphoma 2) family of intracellular regulators of cell death in a murine model of sepsis induced by cecal ligation and puncture (CLP). We show that intraperitoneal injection of picomole range doses of recombinant human (rh) BCL2 or rhBCL2A1 protein markedly improved survival as assessed by surrogate markers of death. Treatment with rhBCL2 or rhBCL2A1 protein significantly reduced the number of apoptotic cells in the intestine and heart following CLP, and this was accompanied by increased expression of endogenous mouse BCL2 protein. Further, mice treated with rhBCL2A1 protein showed an increase in the total number of neutrophils in the peritoneum following CLP with reduced neutrophil apoptosis. Finally, although neither BCL2 nor BCL2A1 are a direct TLR2 ligand, TLR2-null mice were not protected by rhBCL2A1 protein, indicating that TLR2 signaling was required for the protective activity of extracellularly adminsitered BCL2A1 protein in vivo. Conclusions/Significance Treatment with rhBCL2A1 or rhBCL2 protein protects mice from sepsis by reducing apoptosis in multiple target tissues, demonstrating an unexpected, potent activity of extracellularly administered BCL2 BH4-domain proteins.


Inhalation Toxicology | 2013

Glutathione (GSH) and the GSH synthesis gene Gclm modulate plasma redox and vascular responses to acute diesel exhaust inhalation in mice

Chad S. Weldy; Ian Luttrell; Collin C. White; Vicki Morgan-Stevenson; David P. Cox; Christopher M. Carosino; Timothy V. Larson; James A. Stewart; Joel D. Kaufman; Francis Kim; Kanchan Chitaley; Terrance J. Kavanagh

Abstract Context: Inhalation of fine particulate matter (PM2.5) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM2.5 is largely derived from diesel exhaust (DE), and these pathophysiological effects may be due in part to oxidative stress resulting from DE inhalation. The antioxidant glutathione (GSH) is important in limiting oxidative stress-induced vascular dysfunction. The rate-limiting enzyme in GSH synthesis is glutamate cysteine ligase and polymorphisms in its catalytic and modifier subunits (GCLC and GCLM) have been shown to influence vascular function and risk of myocardial infarction in humans. Objective: We hypothesized that compromised de novo synthesis of GSH in Gclm−/+ mice would result in increased sensitivity to DE-induced lung inflammation and vascular effects. Materials and methods: WT and Gclm−/+ mice were exposed to DE via inhalation (300 μg/m3) for 6 h. Neutrophil influx into the lungs, plasma GSH redox potential, vascular reactivity of aortic rings and aortic nitric oxide (NO•) were measured. Results: DE inhalation resulted in mild bronchoalveolar neutrophil influx in both genotypes. DE-induced effects on plasma GSH oxidation and acetylcholine (ACh)-relaxation of aortic rings were only observed in Gclm−/+ mice. Contrary to our hypothesis, DE exposure enhanced ACh-induced relaxation of aortic rings in Gclm−/+ mice. Discussion and conclusion: These data support the hypothesis that genetic determinants of antioxidant capacity influence the biological effects of acute inhalation of DE. However, the acute effects of DE on the vasculature may be dependent on the location and types of vessels involved. Polymorphisms in GSH synthesis genes are common in humans and further investigations into these potential gene-environment interactions are warranted.


Annals of Hepatology | 2017

Differences in hepatic expression of iron, inflammation and stress-related genes in patients with nonalcoholic steatohepatitis.

Priya Handa; Akhila Vemulakonda; Bryan D. Maliken; Vicki Morgan-Stevenson; James E. Nelson; Barjinder K Dhillon; Kelly A. Hennessey; Rohit Gupta; Matthew M. Yeh; Kris V. Kowdley

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. We have previously shown that hepatic reticuloendothelial system (RES) iron deposition is associated with an advanced degree of nonalcoholic steatohepatitis (NASH) in humans. In this study, we aimed to determine differentially expressed genes related to iron overload, inflammation and oxidative stress pathways, with the goal of identifying factors associated with NASH progression. Seventy five patients with NAFLD were evaluated for their biochemical parameters and their liver tissue analyzed for NASH histological characteristics. Gene expression analysis of pathways related to iron homeostasis, inflammation and oxidative stress was performed using real-time PCR. Gene expression was compared between subjects based on disease status and presence of hepatic iron staining. We observed increased gene expression of hepcidin (HAMP) (2.3 fold, p = 0.027), transmembrane serine proteinase 6 (TMPRSS6) (8.4 fold, p = 0.003), signal transducer and activator of transcription 3 (STAT3) (5.5 fold, p = 0.004), proinflammatory cytokines; IL-1β (2.7 fold, p = 0.046) and TNF-α (3.8 fold, p = 0.001) in patients with NASH. TMPRSS6, a negative regulator of HAMP, is overexpressed in patients with NASH and HIF1α (hypoxia inducible factor-1) is downregulated. NAFLD patients with hepatic iron deposition exhibited higher hepci-din expression (3.1 fold, p = 0.04) but lower expression of cytokines. In conclusion, we observed elevated hepatic HAMP expression in patients with NASH and in NAFLD patients who had hepatic iron deposition, while proinflammatory cytokines displayed elevated expression only in patients with NASH, suggesting a regulatory role for hepcidin in NAFL to NASH transition and in mitigating inflammatory responses.


American Journal of Pathology | 2011

Hematopoietic Fas deficiency does not affect experimental atherosclerotic lesion formation despite inducing a proatherogenic state.

R. Angelo de Claro; Xiaodong Zhu; Jingjing Tang; Vicki Morgan-Stevenson; Barbara R. Schwartz; Akiko Iwata; W. Conrad Liles; Elaine W. Raines; John M. Harlan

The Fas death receptor (CD95) is expressed on macrophages, smooth muscle cells, and T cells within atherosclerotic lesions. Given the dual roles of Fas in both apoptotic and nonapoptotic signaling, the aim of the present study was to test the effect of hematopoietic Fas deficiency on experimental atherosclerosis in low-density lipoprotein receptor-null mice (Ldlr(-/-)). Bone marrow from Fas(-/-) mice was used to reconstitute irradiated Ldlr(-/-) mice as a model for atherosclerosis. After 16 weeks on an 0.5% cholesterol diet, no differences were noted in brachiocephalic artery lesion size, cellularity, or vessel wall apoptosis. However, Ldlr(-/-) mice reconstituted with Fas(-/-) hematopoietic cells had elevated hyperlipidemia [80% increase, relative to wild-type (WT) controls; P < 0.001] and showed marked elevation of plasma levels of CXCL1/KC, CCL2/MCP-1, IL-6, IL-10, IL-12 subunit p70, and soluble Fas ligand (P < 0.01), as well as systemic microvascular inflammation. It was not possible to assess later stages of atherosclerosis because of increased mortality in Fas(-/-) bone marrow recipients. Our data indicate that hematopoietic Fas deficiency does not affect early atherosclerotic lesion development in Ldlr(-/-) mice.


Free Radical Biology and Medicine | 2012

Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice

Chad S. Weldy; Ian Luttrell; Collin C. White; Vicki Morgan-Stevenson; Theo K. Bammler; Richard P. Beyer; Zahra Afsharinejad; Francis Kim; Kanchan Chitaley; Terrance J. Kavanagh

Collaboration


Dive into the Vicki Morgan-Stevenson's collaboration.

Top Co-Authors

Avatar

Priya Handa

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Francis Kim

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guenter Daum

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kris V. Kowdley

Virginia Mason Medical Center

View shared research outputs
Top Co-Authors

Avatar

Akiko Iwata

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alan Chait

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Harlan

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge