Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gui Xin Li is active.

Publication


Featured researches published by Gui Xin Li.


Plant Physiology | 2011

Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis.

Jian Li Yang; Xiao Fang Zhu; You Xiang Peng; Cheng Zheng; Gui Xin Li; Yu Liu; Yuan Zhi Shi; Shao Jian Zheng

The cell wall (CW) has been recognized as the major target of aluminum (Al) toxicity. However, the components responsible for Al accumulation and the mechanisms of Al-induced CW function disruption are still elusive. The contribution of different CW components (pectin, hemicellulose 1 [HC1], and HC2) to adsorb Al and the effect of Al on xyloglucan endotransglucosylase/hydrolyase activity were investigated in Arabidopsis (Arabidopsis thaliana) in this study. A fractionation procedure was optimized to effectively extract different CW components, especially to prevent the HC fraction from pectin contamination. When CW materials extracted from Al-treated roots (50 μm Al for 24 h) were fractionated, about 75% of CW Al accumulated in the HC1 fraction. A time-dependent kinetic study showed that only when the HC1 fraction was removed was the amount of Al adsorbed decreased sharply. In vivo localization of xyloglucan endotransglucosylase (XET) activity showed that Al greatly inhibited this enzyme activity within 30 min of exposure, which was concomitant with Al-induced callose deposition in roots. Results from real-time reverse transcription-polymerase chain reaction indicated that three genes may constitute the major contributors to XET activity and that the inhibition of XET activity by Al is caused by transcriptional regulation. These results, to our knowledge for the first time, demonstrate that HC is the major pool for Al accumulation. Furthermore, Al-induced reduction in XET activity could play an important role in Al-induced root growth inhibition.


Plant Physiology | 2009

Elevated Carbon Dioxide Improves Plant Iron Nutrition through Enhancing the Iron-Deficiency-Induced Responses under Iron-Limited Conditions in Tomato

Chong Wei Jin; Shao Ting Du; Wei Wei Chen; Gui Xin Li; Yong Song Zhang; Shao Jian Zheng

The increases in atmospheric carbon dioxide (CO2) concentrations can enhance plant growth and change their nutrient demands. We report that when tomato (Lycopersicon esculentum ‘Zheza 809’) plants were grown in iron (Fe)-limited medium (with hydrous ferric iron oxide) and elevated CO2 (800 μL L−1), their biomass and root-to-shoot ratio were greater than plants grown in ambient CO2 (350 μL L−1). Furthermore, the associated increase in Fe concentrations in the shoots and roots alleviated Fe-deficiency-induced chlorosis. Despite the improved nutrient status of plants grown in Fe-limited medium under elevated CO2, the Fe-deficiency-induced responses in roots, including ferric chelate reductase activity, proton secretion, subapical root hair development, and the expression of FER, FRO1, and IRT genes, were all greater than plants grown in the ambient CO2. The biomass of plants grown in Fe-sufficient medium was also increased by the elevated CO2 treatment, but changes in tissue Fe concentrations and Fe deficiency responses were not observed. These results suggest that the improved Fe nutrition and induction of Fe-deficient-induced responses in plants grown in Fe-limited medium under elevated CO2 are caused by interactions between elevated CO2 and Fe deprivation. Elevated CO2 also increased the nitric oxide (NO) levels in roots, but treatment with the NO scavenger cPTIO inhibited ferric chelate reductase activity and prevented the accumulation of LeFRO1, LeIRT1, and FER transcripts in roots of the Fe-limited plants. These results implicate some involvement of NO in enhancing Fe-deficiency-induced responses when Fe limitation and elevated CO2 occur together. We propose that the combination of elevated CO2 and Fe limitation induces morphological, physiological, and molecular responses that enhance the capacity for plants to access and utilize Fe from sparingly soluble sources, such as Fe(III)-oxide.


Plant Journal | 2014

Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis

Zhong Jie Ding; Jing Ying Yan; Xiao Yan Xu; Di Qiu Yu; Gui Xin Li; Shuqun Zhang; Shao Jian Zheng

Drought and salt stress severely inhibit plant growth and development; however, the regulatory mechanisms of plants in response to these stresses are not fully understood. Here we report that the expression of a WRKY transcription factor WRKY46 is rapidly induced by drought, salt and oxidative stresses. T-DNA insertion of WRKY46 leads to more sensitivity to drought and salt stress, whereas overexpression of WRKY46 (OV46) results in hypersensitivity in soil-grown plants, with a higher water loss rate, but with increased tolerance on the sealed agar plates. Stomatal closing in the OV46 line is insensitive to ABA because of a reduced accumulation of reactive oxygen species (ROS) in the guard cells. We further find that WRKY46 is expressed in guard cells, where its expression is not affected by dehydration, and is involved in light-dependent stomatal opening. Microarray analysis reveals that WRKY46 regulates a set of genes involved in cellular osmoprotection and redox homeostasis under dehydration stress, which is confirmed by ROS and malondialdehyde (MDA) levels in stressed seedlings. Moreover, WRKY46 modulates light-dependent starch metabolism in guard cells via regulating QUA-QUINE STARCH (QQS) gene expression. Taken together, we demonstrate that WRKY46 plays dual roles in regulating plant responses to drought and salt stress and light-dependent stomatal opening in guard cells.


Plant Cell and Environment | 2011

A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex

Xiao Ying Yang; Jian Li Yang; Yuan Zhou; Miguel A. Piñeros; Leon V. Kochian; Gui Xin Li; Shao Jian Zheng

Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted homologous cloning and isolated Vigna umbellata multidrug and toxic compound extrusion (VuMATE), a gene encoding a de novo citrate transporter from rice bean. Al treatment up-regulated VuMATE expression in the root apex, but neither in the mature root region nor in the leaf. The degree of up-regulation of VuMATE was both partially Al concentration and time dependent, consistent with the delay in the onset of the Al-induced citrate efflux in rice bean roots. While La(3+) moderately induced VuMATE expression, Cd(2+) and Cu(2+) did not induce the expression. Electrophysiological analysis of Xenopus oocytes expressing VuMATE indicated this transporter can mediate significant anion efflux across the plasma membrane. [(14) C]citrate efflux experiments in oocytes demonstrated that VuMATE is a H(+) -dependent citrate transporter. In addition, expression of VuMATE in transgenic tomato resulted in increased Al resistance, which correlated with an enhanced citrate efflux. Taken together, these findings suggest that VuMATE is a functional homolog of the known citrate transporters in sorghum, barley, maize and Arabidopsis. The similarities and differences of all the known citrate transporters associated with Al stress in the MATE family are also discussed.


Plant Journal | 2013

WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum‐induced malate secretion in Arabidopsis

Zhong Jie Ding; Jing Ying Yan; Xiao Yan Xu; Gui Xin Li; Shao Jian Zheng

Aluminum (Al) toxicity is the major limiting factor for crop production on acid soils, but the transcriptional regulation of Al tolerance genes is largely unknown. Here, we found that the expression of a WRKY domain-containing transcription factor WRKY46 is inhibited by Al and expressed in root stele, whereas the expression of ALMT1, which encodes a malate efflux transporter, is induced by Al stress and spatially co-localized with WRKY46 in root stele, indicating the possible interaction between WRKY46 and ALMT1 in Arabidopsis. Mutation of WRKY46 by T-DNA insertion leads to better root growth under Al stress, and lower root Al content compared with the wild-type Col-0. The wrky46 mutant shows increased root malate secretion, which is consistent with the higher ALMT1 expression in the mutant. Transient expression analysis using truncated promoter of ALMT1 showed that ALMT1 expression can be inhibited by WRKY46 in tobacco leaves. The yeast one-hybrid assay and ChIP-qPCR analysis revealed that WRKY46 directly binds to ALMT1 promoter through specific W-boxes. Taken together, we demonstrated that WRKY46 is a negative regulator of ALMT1, mutation of WRKY46 leads to increased malate secretion and reduced Al accumulation in root apices, and thus confers higher Al resistance.


Plant Physiology | 2013

Coordination between Apoplastic and Symplastic Detoxification Confers Plant Aluminum Resistance

Xiao Fang Zhu; Gui Jie Lei; Zhi Wei Wang; Yuan Zhi Shi; Janet Braam; Gui Xin Li; Shao Jian Zheng

Plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively. Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution within plant cells, and plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively.


Planta | 2012

Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana

Xiao Fang Zhu; Gui Jie Lei; Tao Jiang; Yu Liu; Gui Xin Li; Shao Jian Zheng

The physiological and molecular mechanisms leading to the competitive interactions between phosphorus (P) and metal elements are a matter of debate. In this study, we found that P deficiency can alleviate cadmium (Cd) toxicity in Arabidopsis thaliana (Col-0). Under P deficiency (−P), less Cd was accumulated in the plants and the root cell walls, indicating the operation of a P-deficiency-induced Cd exclusion mechanism. However, organic acid efflux was similar under −P+Cd and +Cd treatments, suggesting that organic acid efflux is not responsible for the Cd exclusion. Interestingly, P deficiency significantly decreased cell wall polysaccharides (pectin and hemicellulose) contents and pectin methylesterase activity, and decreased the Cd retained by the extracted root cell wall. Therefore, we conclude that the modification of cell wall composition is responsible for the Cd exclusion of the root under P deficiency.


Journal of Hazardous Materials | 2012

Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

Xiao Fang Zhu; Tao Jiang; Zhi Wei Wang; Gui Jie Lei; Yuan Zhi Shi; Gui Xin Li; Shao Jian Zheng

Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis.


Plant Journal | 2015

Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis

Zhong Jie Ding; Jing Ying Yan; Chun Xiao Li; Gui Xin Li; Yun Rong Wu; Shao Jian Zheng

The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.


Journal of Hazardous Materials | 2013

Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

Xiao Fang Zhu; Zhi Wei Wang; Fang Dong; Gui Jie Lei; Yuan Zhi Shi; Gui Xin Li; Shao Jian Zheng

Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd(2+)) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd(2+) concentration and rescued Cd(2+)-induced chlorosis in Arabidopsis thaliana. Under Cd(2+) stress conditions, NAA increased Cd(2+) retention in the roots and most Cd(2+) in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd(2+), whereas it significantly increased the content of hemicellulose 1 and the amount of Cd(2+) retained in it. There were highly significant correlations between Cd(2+) concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd(2+) or NAA+Cd(2+) treatment for 1 to 7d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd(2+) in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd(2+) toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd(2+) fixation in the root, thus reducing the translocation of Cd(2+) from roots to shoots.

Collaboration


Dive into the Gui Xin Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Zhi Shi

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge