Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao Fang Zhu is active.

Publication


Featured researches published by Xiao Fang Zhu.


Plant Physiology | 2011

Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis.

Jian Li Yang; Xiao Fang Zhu; You Xiang Peng; Cheng Zheng; Gui Xin Li; Yu Liu; Yuan Zhi Shi; Shao Jian Zheng

The cell wall (CW) has been recognized as the major target of aluminum (Al) toxicity. However, the components responsible for Al accumulation and the mechanisms of Al-induced CW function disruption are still elusive. The contribution of different CW components (pectin, hemicellulose 1 [HC1], and HC2) to adsorb Al and the effect of Al on xyloglucan endotransglucosylase/hydrolyase activity were investigated in Arabidopsis (Arabidopsis thaliana) in this study. A fractionation procedure was optimized to effectively extract different CW components, especially to prevent the HC fraction from pectin contamination. When CW materials extracted from Al-treated roots (50 μm Al for 24 h) were fractionated, about 75% of CW Al accumulated in the HC1 fraction. A time-dependent kinetic study showed that only when the HC1 fraction was removed was the amount of Al adsorbed decreased sharply. In vivo localization of xyloglucan endotransglucosylase (XET) activity showed that Al greatly inhibited this enzyme activity within 30 min of exposure, which was concomitant with Al-induced callose deposition in roots. Results from real-time reverse transcription-polymerase chain reaction indicated that three genes may constitute the major contributors to XET activity and that the inhibition of XET activity by Al is caused by transcriptional regulation. These results, to our knowledge for the first time, demonstrate that HC is the major pool for Al accumulation. Furthermore, Al-induced reduction in XET activity could play an important role in Al-induced root growth inhibition.


The Plant Cell | 2012

XTH31, Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in Arabidopsis

Xiao Fang Zhu; Yuan Zhi Shi; Gui Jie Lei; Stephen C. Fry; Bao Cai Zhang; Yi Hua Zhou; Janet Braam; Tao Jiang; Xiao Yan Xu; Chuan Zao Mao; Yuan Jiang Pan; Jian Li Yang; Ping Wu; Shao Jian Zheng

Hemicellulose can retain a large amount of Al. This study demonstrates that an important component of hemicellulose, xyloglucan, can bind Al, and knockout of XTH31 increases Al resistance in Arabidopsis by decreasing xyloglucan endotransglucosylase action and the accumulation of xyloglucan in hemicellulose, which in turn reduces the retention of Al in the cell wall, thus excluding Al from roots. Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of 27Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity.


Plant Physiology | 2013

Coordination between Apoplastic and Symplastic Detoxification Confers Plant Aluminum Resistance

Xiao Fang Zhu; Gui Jie Lei; Zhi Wei Wang; Yuan Zhi Shi; Janet Braam; Gui Xin Li; Shao Jian Zheng

Plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively. Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution within plant cells, and plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively.


Planta | 2012

Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana

Xiao Fang Zhu; Gui Jie Lei; Tao Jiang; Yu Liu; Gui Xin Li; Shao Jian Zheng

The physiological and molecular mechanisms leading to the competitive interactions between phosphorus (P) and metal elements are a matter of debate. In this study, we found that P deficiency can alleviate cadmium (Cd) toxicity in Arabidopsis thaliana (Col-0). Under P deficiency (−P), less Cd was accumulated in the plants and the root cell walls, indicating the operation of a P-deficiency-induced Cd exclusion mechanism. However, organic acid efflux was similar under −P+Cd and +Cd treatments, suggesting that organic acid efflux is not responsible for the Cd exclusion. Interestingly, P deficiency significantly decreased cell wall polysaccharides (pectin and hemicellulose) contents and pectin methylesterase activity, and decreased the Cd retained by the extracted root cell wall. Therefore, we conclude that the modification of cell wall composition is responsible for the Cd exclusion of the root under P deficiency.


Plant Cell and Environment | 2014

Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis

Gui Jie Lei; Xiao Fang Zhu; Zhi Wei Wang; Fang Dong; Ning Yu Dong; Shao Jian Zheng

Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis.


Journal of Hazardous Materials | 2012

Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

Xiao Fang Zhu; Tao Jiang; Zhi Wei Wang; Gui Jie Lei; Yuan Zhi Shi; Gui Xin Li; Shao Jian Zheng

Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis.


Journal of Hazardous Materials | 2013

Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

Xiao Fang Zhu; Zhi Wei Wang; Fang Dong; Gui Jie Lei; Yuan Zhi Shi; Gui Xin Li; Shao Jian Zheng

Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd(2+)) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd(2+) concentration and rescued Cd(2+)-induced chlorosis in Arabidopsis thaliana. Under Cd(2+) stress conditions, NAA increased Cd(2+) retention in the roots and most Cd(2+) in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd(2+), whereas it significantly increased the content of hemicellulose 1 and the amount of Cd(2+) retained in it. There were highly significant correlations between Cd(2+) concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd(2+) or NAA+Cd(2+) treatment for 1 to 7d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd(2+) in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd(2+) toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd(2+) fixation in the root, thus reducing the translocation of Cd(2+) from roots to shoots.


Plant Physiology | 2014

Xyloglucan Endotransglucosylase-Hydrolase17 Interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to Confer Xyloglucan Endotransglucosylase Action and Affect Aluminum Sensitivity in Arabidopsis.

Xiao Fang Zhu; Jiang Xue Wan; Ying Sun; Yuan Zhi Shi; Janet Braam; Gui Xin Li; Shao Jian Zheng

A predicted xyloglucan endotransglucosylase (XET) protein interacts with a predicted xyloglucan endohydrolase protein to confer in vivo XET action and change the amount of aluminum retained in hemicellulose and aluminum sensitivity in Arabidopsis. Previously, we reported that although the Arabidopsis (Arabidopsis thaliana) Xyloglucan Endotransglucosylase-Hydrolase31 (XTH31) has predominately xyloglucan endohydrolase activity in vitro, loss of XTH31 results in remarkably reduced in vivo xyloglucan endotransglucosylase (XET) action and enhanced Al resistance. Here, we report that XTH17, predicted to have XET activity, binds XTH31 in yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitations assays and that this interaction may be required for XTH17 XET activity in planta. XTH17 and XTH31 may be colocalized in plant cells because tagged XTH17 fusion proteins, like XTH31 fusion proteins, appear to target to the plasma membrane. XTH17 expression, like that of XTH31, was substantially reduced in the presence of aluminum (Al), even at concentrations as low as 10 µm for 24 h or 25 µm for just 30 min. Agrobacterium tumefaciens-mediated transfer DNA insertion mutant of XTH17, xth17, showed low XET action and had moderately shorter roots than the wild type but was more Al resistant than the wild type. Similar to xth31, xth17 had low hemicellulose content and retained less Al in the cell wall. These data suggest a model whereby XTH17 and XTH31 may exist as a dimer at the plasma membrane to confer in vivo XET action, which modulates cell wall Al-binding capacity and thereby affects Al sensitivity in Arabidopsis.


Plant Physiology | 2014

TRICHOME BIREFRINGENCE-LIKE27 Affects Aluminum Sensitivity by Modulating the O-Acetylation of Xyloglucan and Aluminum-Binding Capacity in Arabidopsis

Xiao Fang Zhu; Ying Sun; Bao Cai Zhang; Nasim Mansoori; Jiang Xue Wan; Yu Liu; Zhi Wei Wang; Yuan Zhi Shi; Yi Hua Zhou; Shao Jian Zheng

O-acetylation of xyloglucan affects aluminum sensitivity in Arabidopsis by modifying the aluminum-binding capacity of xyloglucan in the cell wall.. Xyloglucan (XyG) has been reported to contribute to the aluminum (Al)-binding capacity of the cell wall in Arabidopsis (Arabidopsis thaliana). However, the influence of O-acetylation of XyG, accomplished by the putative O-acetyltransferase TRICHOME BIREFRINGENCE-LIKE27 (TBL27 [AXY4]), on its Al-binding capacity is not known. In this study, we found that the two corresponding TBL27 mutants, axy4-1 and axy4-3, were more Al sensitive than wild-type Columbia-0 plants. TBL27 was expressed in roots as well as in leaves, stems, flowers, and siliques. Upon Al treatment, even within 30 min, TBL27 transcript accumulation was strongly down-regulated. The mutants axy4-1 and axy4-3 accumulated significantly more Al in the root and wall, which could not be correlated with pectin content or pectin methylesterase activity, as no difference in the mutants was observed compared with the wild type when exposed to Al stress. The increased Al accumulation in the wall of the mutants was found to be in the hemicellulose fraction. While the total sugar content of the hemicellulose fraction did not change, the O-acetylation level of XyG was reduced by Al treatment. Taken together, we conclude that modulation of the O-acetylation level of XyG influences the Al sensitivity in Arabidopsis by affecting the Al-binding capacity in the hemicellulose.


Plant Cell and Environment | 2011

Cadmium‐induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum

Xiao Fang Zhu; Cheng Zheng; Yi Ting Hu; Tao Jiang; Yu Liu; Ning Yu Dong; Jian Li Yang; Shao Jian Zheng

Collaboration


Dive into the Xiao Fang Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Zhi Shi

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Liu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge