Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guibin Jiang is active.

Publication


Featured researches published by Guibin Jiang.


Chemosphere | 2008

High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health

Jianjie Fu; Qunfang Zhou; Jiemin Liu; Wei Liu; Thanh Wang; Qinghua Zhang; Guibin Jiang

Very few studies have investigated the heavy metal contents in rice samples from a typical E-waste recycling area. In this study, 10 heavy metals (As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni and Pb) in 13 polished rice and relevant hull samples, six relevant paddy soil samples were investigated. The geometric mean concentrations of Cd, Cu and Hg in soil samples were 1.19, 9.98 and 0.32 microg g(-1), respectively, which were 4.0, 2.0 and 1.1-folds of the maximum allowable concentration (MAC) (0.30, 50.00, 0.30 microg g(-1), respectively) for Chinese agricultural soils. The analyzed metal concentrations were significantly different between rice and relevant hull except for As, Cd and Hg (p<0.05). All metal concentrations, except for Co, in rice hull were higher than those in polished rice. The geometric mean of Pb in polished rice reached 0.69 microg g(-1), which was 3.5-folds higher than the MAC (0.20 microg g(-1)) by the safety criteria for milled rice. Cd contents in 31% of the rice samples exceeded the national MAC (0.20 microg g(-1)), and the arithmetic mean also slightly exceeded national MAC. In addition, Cd and Pb contents in local rice were much higher than commercial rice samples examined in this work and previous studies. Comparing the tolerable daily intakes given by FAO/WHO with the mean estimated daily intakes; Pb daily intake through rice consumption in this area was 3.7 microg day(-1)kg(-1) body weight (bw), which already exceeded the FAO tolerable daily intake, and the Cd daily intake (0.7 microg day(-1)kg(-1) bw) through rice had already taken up 70% of the total tolerable daily intake (1 microg day(-1)kg(-1) bw). The daily intake of Hg and As through rice was much lower than the tolerable daily intakes, but bioaccumulation of Hg through the food chain and intake of As from other food stuff should also be of concern.


Angewandte Chemie | 2011

Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High‐Performance Adsorbents for Solid‐Phase Extraction

Qian Liu; Jianbo Shi; Jianteng Sun; Thanh Wang; Lixi Zeng; Guibin Jiang

Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction


Journal of Chromatography A | 2008

Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples.

Xiaoli Zhao; Yali Shi; Thanh Wang; Yaqi Cai; Guibin Jiang

A novel type of superparamagnetic silica-coated (Fe3O4/SiO2 core/shell) magnetite nanoparticle modified by surfactants has been successfully synthesized and was applied as an effective sorbent material for the pre-concentration of several typical phenolic compounds (bisphenol A (BPA), 4-tert-octylphenol (4-OP) and 4-n-nonylphenol (4-NP)) from environmental water samples. Compared with pure magnetic particles, a thin and dense silica layer would protect the iron oxide core from leaching out in acidic conditions. In order to enhance their adsorptive tendency towards organic compounds, cetylpyridinium chloride (CPC) or cetyltrimethylammonium bromide (CTAB) were added, which adsorbed on the surface of the Fe3O4/SiO2 nanoparticles (Fe3O4/SiO2 NPs) and formed mixed hemimicelles. Main factors affecting the adsolubilization of analytes were optimized and comparative study on the use of CPC and CTAB-coated Fe3O4/SiO2 NPs mixed hemimicelles-based SPE was also carried out. CPC-coated Fe3O4/SiO2 NPs system was selected due to lower elution volume required and more effective adsorption of the target compounds. Under selected conditions, concentration factor of 1600 was achieved by using this method to extract 800 mL of different environmental water samples. The detection limits obtained for BPA, 4-OP and 4-NP with HPLC-FLD were 7, 14, and 20 ng/L, respectively.


Journal of Hazardous Materials | 2009

Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds

Shengxiao Zhang; Xiaoli Zhao; Hongyun Niu; Yali Shi; Yaqi Cai; Guibin Jiang

Fe(3)O(4) magnetic nanoparticles (MNPs) with diameters about 10nm were synthesized successfully and used to remove phenol and aniline from aqueous solution. The results showed that phenol and aniline could be eliminated easily from solution under acidic and neutral conditions in the presence of MNPs and H(2)O(2). When the concentrations of Fe(3)O(4) MNPs and H(2)O(2) were 5gL(-1) and 1.2M, respectively, phenol and aniline could be removed completely after 6h of reaction at 308K, and the total organic carbon (TOC) abatement efficiency for phenol and aniline were 42.79% and 40.38%. Some intermediates such as formic acid, acetic acid, fumaric acid and hydroquinone were detected during reaction. Fe(3)O(4) MNPs exhibited good stability and reusability, also showed excellent catalysis ability to eliminate some substituted phenolic and aniline compounds from solution. Fe(3)O(4) MNPs had good superparamagnetism and was readily separated from solution by applying an external magnetic field. Finally we proposed that phenol and aniline might be degraded by the hydroxyl free radicals (.OH) released from H(2)O(2) in the presence of Fe(3)O(4) MNPs as catalysts.


Journal of Chromatography A | 2011

Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes

Qian Liu; Jianbo Shi; Lixi Zeng; Thanh Wang; Yaqi Cai; Guibin Jiang

Graphene, a novel class of carbon nanostructures, possesses an ultrahigh specific surface area, and thus has great potentials for the use as sorbent materials. We herein demonstrate the use of graphene as a novel adsorbent for solid-phase extraction (SPE). Eight chlorophenols (CPs) as model analytes were extracted on a graphene-packed SPE cartridge, and then eluted with alkaline methanol. The concentrations in the eluate were determined by HPLC with multi-wavelength UV detection. Under the optimized conditions, high sensitivity (detection limits 0.1-0.4 ng/mL) and good reproducibility of CPs (RSDs 2.2-7.7% for run-to-run assays) were achieved. Comparative studies showed that graphene was superior to other adsorbents including C18 silica, graphitic carbon, single- and multi-walled carbon nanotubes for the extraction of CPs. Some other advantages of graphene as SPE adsorbent, such as good compatibility with various organic solvents, good reusability and no impact of sorbent drying, have also been demonstrated. The proposed method was successfully applied to the analysis of tap and river water samples with recoveries ranging from 77.2 to 116.6%. This work not only proposes a useful method for environmental water sample pretreatment, but also reveals great potentials of graphene as an excellent sorbent material in analytical processes.


Chemical Reviews | 2014

Chemical basis of interactions between engineered nanoparticles and biological systems.

Qingxin Mu; Guibin Jiang; Lingxin Chen; Hongyu Zhou; Denis Fourches; Alexander Tropsha; Bing Yan

As defined by the European Commission, nanomaterial is a natural, incidental or manufactured material containing particles in an unbound state or as an aggregate or agglomerate in which ≥ 50% of the particles in the number size distribution have one or more external dimensions in the size range 1 to 100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competition, the number size distribution threshold of 50% may be replaced with a threshold between 1 and 50%.1 Engineered nanomaterials (ENMs) refer to man-made nanomaterials. Materials in the nanometer range often possess unique physical, optical, electronic, and biological properties compared with larger particles, such as the strength of graphene,2 the electronic properties of carbon nanotubes (CNTs),3 the antibacterial activity of silver nanoparticles4 and the optical properties of quantum dots (QDs).5 The unique and advanced properties of ENMs have led to a rapid increase in their application. These applications include aerospace and airplanes, energy, architecture, chemicals and coatings, catalysts, environmental protection, computer memory, biomedicine and consumer products. Driven by these demands, the worldwide ENM production volume in 2016 is conservatively estimated in a market report by Future Markets to be 44,267 tons or ≥


Journal of Chromatography A | 2008

Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography/spectrophotometry detection.

Jidong Li; Xiaoli Zhao; Yali Shi; Yaqi Cai; Shifen Mou; Guibin Jiang

5 billion.6 As the production and applications of ENMs rapidly expand, their environmental impacts and effects on human health are becoming increasingly significant.7 Due to their small sizes, ENMs are easily made airborne.8 However, no accurate method to quantitatively measure their concentration in air currently exists. A recently reported incident of severe pulmonary fibrosis caused by inhaled polymer nanoparticles in seven female workers obtained much attention.9 In addition to the release of ENM waste from industrial sites, a major release of ENMs to environmental water occurs due to home and personal use of appliances, cosmetics and personal products, such as shampoo and sunscreen.10 Airborne and aqueous ENMs pose immediate danger to the human respiratory and gastrointestinal systems. ENMs may enter other human organs after they are absorbed into the bloodstream through the gastrointestinal or respiratory systems.11,12 Furthermore, ENMs in cosmetics and personal care products, such as lotion, sunscreen and shampoo may enter human circulation through skin penetration.13 ENMs are very persistent in the environment and are slowly degraded. The dissolved metal ions from ENMs can also revert back to nanoparticles under natural conditions.14 ENMs are stored in plants, microbes and animal organs and can be transferred and accumulated through the food chain.15,16 In addition to the accidental entry of ENMs into human and biological systems, ENMs are also purposefully injected into or enter humans for medicinal and diagnostic purposes.17 Therefore, interactions of ENMs with biological systems are inevitable. In addition to engineered nanomaterials, there are also naturally existing nanomaterials such as proteins and DNA molecules, which are key components of biological systems. These materials, combined with lipids and organic and inorganic small molecules, form the basic units of living systems –cells.18 To elucidate how nanomaterials affect organs and physiological functions, a thorough understanding of how nanomaterials perturb cells and biological molecules is required (Figure 1). Rapidly accumulating evidence indicates that ENMs interact with the basic components of biological systems, such as proteins, DNA molecules and cells.19-21 The driving forces for such interactions are quite complex and include the size, shape and surface properties (e.g., hydrophobicity, hydrogen-bonding capability, pi-bonds and stereochemical interactions) of ENMs.22-25 Figure 1 Interactions of nanoparticles with biological systems at different levels. Nanoparticles enter the human body through various pathways, reaching different organs and contacting tissues and cells. All of these interactions are based on nanoparticle-biomacromolecule ... Evidence also indicates that chemical modifications on a nanoparticle’s surface alter its interactions with biological systems.26-28 These observations not only support the hypothesis that basic nano-bio interactions are mainly physicochemical in nature but also provide a powerful approach to controlling the nature and strength of a nanoparticle’s interactions with biological systems. Practically, a thorough understanding of the fundamental chemical interactions between nanoparticles and biological systems has two direct impacts. First, this knowledge will encourage and assist experimental approaches to chemically modify nanoparticle surfaces for various industrial or medicinal applications. Second, a range of chemical information can be combined with computational methods to investigate nano-biological properties and predict desired nanoparticle properties to direct experiments.29-31 The literature regarding nanoparticle-biological system interactions has increased exponentially in the past decade (Figure 2). However, a mechanistic understanding of the chemical basis for such complex interactions is still lacking. This review intends to explore such an understanding in the context of recent publications. Figure 2 An analysis of literature statistics indicates growing concern for the topics that are the focus of this review. The number of publications and citations were obtained using the keywords “nanoparticles” and “biological systems” ... A breakthrough technology cannot prosper without wide acceptance from the public and society; that is, it must pose minimal harm to human health and the environment. Nanotechnology is now facing such a critical challenge. We must elucidate the effects of ENMs on biological systems (such as biological molecules, human cells, organs and physiological systems). Accumulating experimental evidence suggests that nanoparticles interact with biological systems at nearly every level, often causing unwanted physiological consequences. Elucidating these interactions is the goal of this review. This endeavor will help regulate the proper application of ENMs in various products and their release into the environment. A more significant mission of this review is to direct the development of “safe-by-design” ENMs, as their demands for and applications continue to increase.


Journal of Hazardous Materials | 2010

Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles.

Xiaoli Zhao; Jieming Wang; Fengchang Wu; Thanh Wang; Yaqi Cai; Yali Shi; Guibin Jiang

Mixed hemimicelles solid-phase extraction (SPE) based on cetyltrimethylammonium bromide (CTAB)-coated nano-magnets Fe3O4 was investigated for the preconcentration of four chlorophenols (CPs) in environmental water samples prior to HPLC-spectrophotometry determination in this paper. By the rapid isolating (about 5 min) of Fe3O4 nanoparticles (NPs) through placing a Nd-Fe-B strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conversional SPE method with a column can be avoided. The unique properties of Fe3O4 NPs such as high surface area and strong magnetism were utilized adequately in the SPE process. This novel separation method produced a high preconcentration rate and factor. A comprehensive study of the adsorption conditions such as the Fe3O4 NPs zeta-potential, CTAB added amounts, pH value, standing time and maximal extraction volume was also presented. Under optimized conditions, four analytes of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) were quantitatively extracted. The method was then used to determine four CPs in five real environmental water samples. High concentration factors (700) were achieved for each of the analytes, with observed detection limits ranging between 0.11 and 0.15 microg L(-1). The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (83-98%) with satisfactory relative standard deviation (RSD) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the four CPs were obtained with only a little amount of Fe3O4 NPs (0.1g) and CTAB (60 mg). To the best of our knowledge, this was the first time a mixed hemimicelles SPE method based on Fe3O4 NPs magnetic separation had been used for the pretreatment of environmental water samples.


Journal of Hazardous Materials | 2011

Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica.

Guoliang Li; Zongshan Zhao; Jiyan Liu; Guibin Jiang

A novel magnetic nanosized adsorbent using hydrous aluminum oxide embedded with Fe(3)O(4) nanoparticle (Fe(3)O(4)@Al(OH)(3) NPs), was prepared and applied to remove excessive fluoride from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle and hydrous aluminum oxide floc with magnetic separability and high affinity toward fluoride, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption capacity calculated by Langmuir equation was 88.48 mg g(-1) at pH 6.5. Main factors affecting the removal of fluoride, such as solution pH, temperature, adsorption time, initial fluoride concentration and co-existing anions were investigated. The adsorption capacity increased with temperature and the kinetics followed a pseudo-second-order rate equation. The enthalpy change (Delta H(0)) and entropy change (DeltaS(0)) was 6.836 kJ mol(-1) and 41.65 J mol(-1)K(-1), which substantiates the endothermic and spontaneous nature of the fluoride adsorption process. Furthermore, the residual concentration of fluoride using Fe(3)O(4)@Al(OH)(3) NPs as adsorbent could reach 0.3 mg L(-1) with an initial concentration of 20 mg L(-1), which met the standard of World Health Organization (WHO) norms for drinking water quality. All of the results suggested that the Fe(3)O(4)@Al(OH)(3) NPs with strong and specific affinity to fluoride could be excellent adsorbents for fluoride contaminated water treatment.


Nanoscale | 2012

A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites

Liangqia Guo; Qian Liu; Guoliang Li; Jianbo Shi; Jiyan Liu; Thanh Wang; Guibin Jiang

A thiol-functionalized magnetic mesoporous silica material (called SH-mSi@Fe(3)O(4)), synthesized by a modified Stöber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N(2) adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi@Fe(3)O(4) and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10(5)mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi@Fe(3)O(4) was able to regenerate in acid solution under ultrasonication. This novel SH-mSi@Fe(3)O(4) is suitable for repeated use in heavy metal removal from different water matrices.

Collaboration


Dive into the Guibin Jiang's collaboration.

Top Co-Authors

Avatar

Jingfu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yawei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qunfang Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Thanh Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianbo Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qinghua Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pu Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianjie Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiyan Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge