Guifeng Wei
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guifeng Wei.
Biochemistry | 2015
Huaxia Luo; Yu Sun; Guifeng Wei; Jianjun Luo; Xinling Yang; Wei Liu; Mingzhou Guo; Runsheng Chen
Long noncoding RNAs (lncRNAs) are pervasively transcribed in the human genome. Recent studies suggest that the involvement of lncRNAs in human diseases could be far more prevalent than previously appreciated. Here we have identified a lncRNA termed Lnc_bc060912 whose expression is increased in human lung and other tumors. Lnc_bc060912 is 1.2 kb in length and is composed of two exons. The expression of Lnc_bc060912 was repressed by p53. Lnc_bc060912 suppressed cell apoptosis. Using a recently developed method for RNA-pulldown with formaldehyde cross-linking, we found that Lnc_bc060912 interacted with the two DNA damage repair proteins PARP1 and NPM1. Together, these results suggest that Lnc_bc060912, via PARP1 and NPM1, affects cell apoptosis and may play important roles in tumorigenesis and cancer progression.
Oncotarget | 2016
Lihui Liu; Haiyan Yue; Qinghua Liu; Jiao Yuan; Jing Li; Guifeng Wei; Xiaomin Chen; Youyong Lu; Mingzhou Guo; Jianjun Luo; Runsheng Chen
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play important roles in transcriptional regulation, whereas the extent to which the lncRNAs also function at the posttranscriptional level is less known. In the present study, we report a lncRNA named MT1JP which acts as a tumor suppressor through a posttranscriptional mechanism. We found that MT1JP is differentially expressed in tumor tissues by analyzing data from a customized microarray applied to 76 pairs of matched normal and cancer tissue samples. By associating with the RNA-binding protein TIAR, MT1JP enhanced the translation of the master transcription factor p53, thereby regulating a series of pathways involving p53, such as the cell cycle, apoptosis and proliferation. When MT1JP was down-regulated, the protein level of p53 declined, which in turn accelerated cell deterioration and tumor formation. Moreover, differential expression of MT1JP in cancerous and normal tissues suggests that it may be a promising prognostic marker and a therapeutic target. Taken together, we identified MT1JP as a critical factor in restraining cell transformation by modulating p53 translation through interactions with TIAR, and this finding is likely to shed new light on future investigations about posttranscriptional or translational effects of lncRNAs during cell transformation.
Nucleic Acids Research | 2011
Yunfei Wang; Jingjing Chen; Guifeng Wei; Housheng He; Xiaopeng Zhu; Tengfei Xiao; Jiao Yuan; Bo Dong; Shunmin He; Geir Skogerbø; Runsheng Chen
Earlier studies have revealed a substantial amount of transcriptional activity occurring outside annotated protein-coding genes of the Caenorhabditis elegans genome. One important fraction of this transcriptional activity relates to intermediate-size (70–500 nt) transcripts (is-ncRNAs) of mostly unknown function. Profiling the expression of this segment of the transcriptome on a tiling array through the C. elegans life cycle identified 5866 hitherto unannotated transcripts. The novel loci were distributed across intronic and intergenic space, with some enrichment toward protein-coding gene termini. The majority of the putative is-ncRNAs showed either stage-specific expression, or distinct developmental variation in their expression levels. More than 200 loci showed male-specific expression, and conserved loci were significantly enriched on the X chromosome, both observations strongly suggesting involvement of is-ncRNAs in sex-specific functions. Half of the novel loci were conserved in other nematodes, and numerous loci showed significant conservational correlations to nearby coding genes. Assuming functional roles for most of the novel loci, the data imply a nematode is-ncRNA tool kit of considerable size and variety.
Oncogene | 2017
Y Sun; Guifeng Wei; Huaxia Luo; William Ka Kei Wu; Geir Skogerbø; Jianjun Luo; Runsheng Chen
Increasing evidence indicates that long noncoding RNAs (lncRNAs) have important roles in various physiological processes and dysfunction of lncRNAs could be a prevalent cause in human diseases. Here we functionally characterized the nuclear-enriched lncRNA SNHG1, which is highly expressed in multiple types of cancer. We also provide evidence that SNHG1 promotes cancer cell growth by regulating gene expression both in cis and in trans. SNHG1 was involved in the AKT signaling pathway as it promotes the neighboring transcription of the protein-coding gene SLC3A2 in cis by binding the Mediator complex to facilitate the establishment of enhancer–promoter interaction. In trans, SNHG1 directly interacted with central domain of FUBP1 and antagonize the binding of FBP-interacting repressor to FUBP1, thereby coordinating the expression of the oncogene MYC. Collectively, our findings demonstrate that lncRNA SNHG1 can function both in cis and in trans with distinct mechanisms to regulate transcription, promoting tumorigenesis and cancer progression.
Scientific Reports | 2016
Jiahui Chen; Lihui Liu; Guifeng Wei; Wei Wu; Huaxia Luo; Jiao Yuan; Jianjun Luo; Runsheng Chen
The identification and characterization of long non-coding RNAs (lncRNAs) in diverse biological processes has recently developed rapidly. The large amounts of non-coding RNAs scale consistent with developmental complexity in eukaryotes, indicating that most of these transcripts may have functions in the regulation of biological processes and disorder in the organisms. In particular, Understanding of the overall biological significance of lncRNAs in cancers still remains limited. Here, we found a nuclear-retained lncRNA, termed Lnc_ASNR (apoptosis suppressing-noncoding RNA), which serves as a repressor of apoptosis. Lnc_ASNR was discovered in a set of microarray data derived from four kinds of tumor and adjacent normal tissue samples, and displayed significant up-regulation in the tumor tissues. Using an RNA-pull down assay, we found that Lnc_ASNR interacted with the protein ARE/poly (U)-binding/degradation factor 1(AUF1), which is reported to promote rapid degradation of the Bcl-2 mRNA, an inhibitor of apoptosis. Lnc_ASNR binds to AUFI in nucleus, decreasing the cytoplasmic proportion of AUF1 which targets the B-cell lymphoma-2 (Bcl-2) mRNA. Taken together, the overall effect of Lnc_ASNR expression is thus a decrease in cell apoptosis indicating that Lnc_ASNR may play a vital role in tumorigenesis and carcinogenesis.
PLOS ONE | 2012
Aqian Li; Guifeng Wei; Yunfei Wang; Ying Zhou; Xian-En Zhang; Li-Jun Bi; Runsheng Chen
Background A network of DNA damage response (DDR) mechanisms functions coordinately to maintain genome integrity and prevent disease. The Nucleotide Excision Repair (NER) pathway is known to function in the response to UV-induced DNA damage. Although numbers of coding genes and miRNAs have been identified and reported to participate in UV-induced DNA damage response (UV-DDR), the precise role of non-coding RNAs (ncRNAs) in UV-DDR remains largely unknown. Methodology/Principal Findings We used high-throughput RNA-sequencing (RNA-Seq) to discover intermediate-size (70–500 nt) ncRNAs (is-ncRNAs) in C. elegans, using the strains of L4 larvae of wild-type (N2), UV-irradiated (N2/UV100) and NER-deficient mutant (xpa-1), and 450 novel non-coding transcripts were initially identified. A customized microarray assay was then applied to examine the expression profiles of both novel transcripts and known is-ncRNAs, and 57 UV-DDR-related is-ncRNA candidates showed expression variations at different levels between UV irradiated strains and non- irradiated strains. The top ranked is-ncRNA candidates with expression differences were further validated by qRT-PCR analysis, of them, 8 novel is-ncRNAs were significantly up-regulated after UV irradiation. Knockdown of two novel is-ncRNAs, ncRNA317 and ncRNA415, by RNA interference, resulted in higher UV sensitivity and significantly decreased expression of NER-related genes in C. elegans. Conclusions/Significance The discovery of above two novel is-ncRNAs in this study indicated the functional roles of is-ncRNAs in the regulation of UV-DDR network, and aided our understanding of the significance of ncRNA involvement in the UV-induced DNA damage response.
BMC Genomics | 2012
Monica C. Sleumer; Guifeng Wei; Yunfei Wang; Hao Chang; Tao Xu; Runsheng Chen; Michael Q. Zhang
BackgroundRibosomal protein genes (RPGs) are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans.ResultsIn this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation.We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing.ConclusionsOur results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from those of all other species examined up until now.
Frontiers in Molecular Neuroscience | 2017
Mei Han; Wenjuan Zou; Hao Chang; Yong Yu; Haining Zhang; Shitian Li; Hankui Cheng; Guifeng Wei; Yan Chen; Valerie Reinke; Tao Xu; Lijun Kang
Synaptic vesicles (SV) store various neurotransmitters that are released at the synapse. The molecular mechanisms of biogenesis, exocytosis, and endocytosis for SV, however, remain largely elusive. In this study, using Complex Object Parametric Analysis and Sorter (COPAS) to monitor the fluorescence of synapto-pHluorin (SpH), we performed a whole-genome RNAi screen in C. elegans to identify novel genetic modulators in SV cycling. One hundred seventy six genes that up-regulating SpH fluorescence and 96 genes that down-regulating SpH fluorescence were identified after multi-round screen. Among these genes, B0035.1 (bugz-1) encodes ortholog of mammalian C2H2 zinc-finger protein BuGZ/ZNF207, which is a spindle assembly checkpoint protein essential for mitosis in human cells. Combining electrophysiology, imaging and behavioral assays, we reveal that depletion of BuGZ-1 results in defects in locomotion. We further demonstrate that BuGZ-1 promotes SV recycling by regulating the expression levels of endocytosis-related genes such as rab11.1. Therefore, we have identified a bunch of potential genetic modulators in SV cycling, and revealed an unexpected role of BuGZ-1 in regulating synaptic transmission.
Scientific Reports | 2016
Yu Guo; Zi-Long Wang; You Li; Guifeng Wei; Jiao Yuan; Yu Sun; Huan Wang; Qiuhong Qin; Zhi-Jiang Zeng; Shaowu Zhang; Runsheng Chen
In the last decade, it has been demonstrated that brain functional asymmetry occurs not only in vertebrates but also in invertebrates. However, the mechanisms underlying functional asymmetry remain unclear. In the present study, we trained honeybees of the same parentage and age, on the proboscis extension reflex (PER) paradigm with only one antenna in use. The comparisons of gene expression between the left and right hemispheres were carried out using high throughput sequencing. Our research revealed that gene expression in the honeybee brain is also asymmetric, with more genes having higher expression in the right hemisphere than the left hemisphere. Our studies show that during olfactory learning, the left hemisphere is more responsible for long term memory and the right hemisphere is more responsible for the learning and short term memory.
Protein & Cell | 2014
Derong Xu; Guifeng Wei; Ping Lu; Jianjun Luo; Xiaomin Chen; Geir Skogerbø; Runsheng Chen
AbstractIn recent years, large numbers of non-coding RNAs (ncRNAs) have been identified in C. elegans but their functions are still not well studied. In C. elegans, CEP-1 is the sole homolog of the p53 family of genes. In order to obtain transcription profiles of ncRNAs regulated by CEP-1 under normal and UV stressed conditions, we applied the ‘not-so-random’ hexamers priming strategy to RNA sequencing in C. elegans, This NSR-seq strategy efficiently depleted rRNA transcripts from the samples and showed high technical replicability. We identified more than 1,000 ncRNAs whose apparent expression was repressed by CEP-1, while around 200 were activated. Around 40% of the CEP-1 activated ncRNAs promoters contain a putative CEP-1-binding site. CEP-1 regulated ncRNAs were frequently clustered and concentrated on the X chromosome. These results indicate that numerous ncRNAs are involved in CEP-1 transcriptional network and that these are especially enriched on the X chromosome in C. elegans.