Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guilherme R. Lotufo is active.

Publication


Featured researches published by Guilherme R. Lotufo.


Chemosphere | 2003

Bioaccumulation and critical body residue of PAHs in the amphipod, Diporeia spp.: additional evidence to support toxicity additivity for PAH mixtures

Peter F. Landrum; Guilherme R. Lotufo; Duane C. Gossiaux; Michelle L. Gedeon; Jong-Hyeon Lee

Polycyclic aromatic hydrocarbons (PAHs) are considered to act additively when exposed as congener mixtures. Additive internal concentrations at the site of toxic action is the basis for recent efforts to establish a sum PAH guideline for sediment-associated PAH toxicity. This study determined the toxicity of several PAH congeners on a body residue basis in Diporeia spp. These values were compared to the previously established LR(50) value for a PAH mixture based on the molar sum of PAH congeners and demonstrated similar LR(50) values for individual PAH. These results support the contention that the PAH act at the same molar concentration whether present as individual compounds or in mixture. Aqueous exposures were conducted for 28 d, and the water was exchanged daily to maintain the exposure concentration. The concentration in the exposures declined by an average of 22% between water exchanges across all compounds, and ranged from 11% to 32%. The toxicokinetics were determined using both time-weighted-average (TWA) and time-variable water concentrations and were not statistically different between the two source functions. Toxicity was determined for both mortality and immobility (failure to swim on prodding) and on both a TWA water concentration and a body residue basis. The LC(50) values ranged from 1757 microg l(-1) for naphthalene after 10 d exposure to 79.1 microg l(-1) for pyrene after 28 d exposure, and the EC(50) ranged from 1587 microg l(-1) for naphthalene after 10 d exposure to 38.2 microg l(-1) for pyrene after 28 d exposure. The LR(50) values for all congeners at all lengths of exposure were essentially constant and averaged 7.5+/-2.6 micromol g(-1), while the ER(50) for immobility averaged 2.6+/-0.6 micromol g(-1). The bioconcentration factor declined with increasing exposure concentration and was driven primarily by a lower uptake rate with increasing dose, while the elimination remained essentially constant for each compound.


Integrated Environmental Assessment and Management | 2012

Comparing laboratory and field measured bioaccumulation endpoints

Lawrence P. Burkhard; Jon A. Arnot; Michelle R. Embry; Kevin J. Farley; Robert A. Hoke; Masaru Kitano; H.A. Leslie; Guilherme R. Lotufo; Thomas F. Parkerton; Keith Sappington; Gregg T. Tomy; Kent B. Woodburn

An approach for comparing laboratory and field measures of bioaccumulation is presented to facilitate the interpretation of different sources of bioaccumulation data. Differences in numerical scales and units are eliminated by converting the data to dimensionless fugacity (or concentration-normalized) ratios. The approach expresses bioaccumulation metrics in terms of the equilibrium status of the chemical, with respect to a reference phase. When the fugacity ratios of the bioaccumulation metrics are plotted, the degree of variability within and across metrics is easily visualized for a given chemical because their numerical scales are the same for all endpoints. Fugacity ratios greater than 1 indicate an increase in chemical thermodynamic activity in organisms with respect to a reference phase (e.g., biomagnification). Fugacity ratios less than 1 indicate a decrease in chemical thermodynamic activity in organisms with respect to a reference phase (e.g., biodilution). This method provides a holistic, weight-of-evidence approach for assessing the biomagnification potential of individual chemicals because bioconcentration factors, bioaccumulation factors, biota-sediment accumulation factors, biomagnification factors, biota-suspended solids accumulation factors, and trophic magnification factors can be included in the evaluation. The approach is illustrated using a total 2393 measured data points from 171 reports, for 15 nonionic organic chemicals that were selected based on data availability, a range of physicochemical partitioning properties, and biotransformation rates. Laboratory and field fugacity ratios derived from the various bioaccumulation metrics were generally consistent in categorizing substances with respect to either an increased or decreased thermodynamic status in biota, i.e., biomagnification or biodilution, respectively. The proposed comparative bioaccumulation endpoint assessment method could therefore be considered for decision making in a chemicals management context.


Environmental Toxicology and Chemistry | 2005

Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius

Gunther Rosen; Guilherme R. Lotufo

The lethal toxicity of the explosive compounds 14C-labeled 2,4,6-trinitrotoluene (TNT) and nonradiolabeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the estuarine amphipod Eohaustorius estuarius was investigated in 10-d spiked sediment exposures. The 10-d median lethal concentration (LC50) was determined using the sum molar initial concentration of TNT, aminodinitrotoluenes (ADNTs), and diaminonitrotoluenes (DANTs), as determined by high-performance liquid chromatography (HPLC), and collectively referred to as HPLC-TNT*. Despite expectations of higher toxicity in sandy sediment (Yaquina Bay [YB], OR, USA) compared to relatively fine-grained sediment (San Diego Bay [SDB], CA, USA), LC50 values were similar: 159 and 125 micromol/kg, for YB and SDB sediments, respectively. When expressed as the sum of TNT and all its degradation products (14C-TNT*), LC50s were approximately two times the corresponding LC50s determined by HPLC. The HPLC-TNT* fraction likely corresponds to the most bioavailable and toxic transformation products. The concentrations of 14C-TNT* in tissues were substantially higher than those for HPLC-TNT*, suggesting that compounds other than TNT and its major aminated transformation products were prevalent. Critical body residues were similar for exposures to SDB (11.7 micromol/kg) and YB sediments (39.4 micromol/kg), despite marked differences in the nature of compounds available for uptake in the exposure media. The critical body residues for E. estuarius are lower than those reported for other aquatic invertebrates (83-172 micromol/kg). Unlike observations for TNT, RDX was only loosely associated with SDB sediment, with near complete recovery of the parent compound by chemical analysis. Exposure to RDX did not result in significant mortality even at the highest measured sediment concentration of 10,800 micromol/kg dry weight, nor tissue concentrations as high as 96 micromol/kg wet weight. The lack of RDX lethal effects in this study is consistent with results reported for other invertebrate species.


Marine Environmental Research | 2009

A comparison of acute and chronic toxicity methods for marine sediments

Alan J. Kennedy; Jeffery A. Steevens; Guilherme R. Lotufo; John Farrar; Mark R. Reiss; Roy K. Kropp; Jon Doi; Todd S. Bridges

Sediment toxicity tests are valuable tools for assessing the potential effects of contaminated sediments in dredged material evaluations because they inherently address complexity (e.g., unknown contaminants, mixtures, bioavailability). Although there is a need to understand the chronic and sublethal impacts of contaminants, it is common to conduct only short-term lethality tests in evaluations of marine sediments. Chronic toxicity methods for marine sediments have been developed but the efficacy of these methods is less documented. In this evaluation of marine sediments collected from the New York/New Jersey (NY/NJ) Harbor, three 10-d acute toxicity test methods (Ampelisca abdita, Leptocheirus plumulosus, Americamysis bahia) and three chronic and sublethal test methods (28-d L. plumulosus, 20- and 28-d Neanthes arenaceodentata) were applied by three testing laboratories. Although the N. arenaceodentata and A. bahia tests did not indicate significant toxicity for the sediments tested in this study, these methods have been reported useful in evaluating other sediments. The 10-d A. abdita, 10-d L. plumulosus and 28-d L. plumulosus tests were comparable between laboratories, indicating 29-43%, 29%, and 43-71% of the tested sediments as potentially toxic. The 28-d L. plumulosus method was the only chronic toxicity test that responded to the test sediments in this study. The 28-d L. plumulosus endpoint magnitudes were related to sediment chemistry and the sublethal endpoints were reduced as much or more than acute lethality endpoints. However, intra-treatment sublethal endpoint variability was greater, compromising detection of statistical significance. In this study, the chronic L. plumulosus test method was less consistent among laboratories relative to acute test methods, identifying potential for toxicity in a similar number (or slightly more) NY/NJ Harbor sediments.


Environmental Toxicology and Chemistry | 2005

Accumulation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine in channel catfish (ictalurus punctatus) and aquatic oligochaetes (lumbriculus variegatus)

Jason B. Belden; Guilherme R. Lotufo; Michael J. Lydy

The extensively used military explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has been widely released to the environment during production, usage, and disposal operations. Toxic effects of RDX have been reported in terrestrial and aquatic receptors, but investigations regarding the bioaccumulation potential of RDX in aquatic systems are scarce. The objective of the present study was to describe the toxicokinetics of RDX during aqueous exposure for the channel catfish (Ictalurus punctatus) and aquatic oligochaetes (Lumbriculus variegatus) and to compare the amount of RDX accumulation in juvenile catfish following aqueous exposure only, dietary exposure only, and a combination of dietary and aqueous exposure. The toxicokinetics measurements included bioconcentration factors (BCFs), uptake rates, elimination rates, and biological half-lives. First-order, single-compartment models described the toxicokinetics for both species. Uptake of RDX into oligochaetes was relatively rapid (uptake clearance constant [k(u)] of 5.17 ml/g/h) compared to that in catfish (k(u) = 1.28 ml/g/h). However, elimination also was more rapid in oligochaetes, with biological half-lives of 0.28 and 1.09 h for oligochaetes and catfish, respectively. Thus, both species had very similar estimated BCFs of 2.1 ml/g for oligochaetes and 2.0 ml/g for catfish. Accumulation of RDX in fish that were fed oligochaetes exposed to an exceedingly high water concentration of RDX was minimal. The present investigation indicates that RDX uptake via the aqueous route is the expected dominant uptake pathway, with dietary uptake contributing minimally to the overall body burden in fish inhabiting RDX-contaminated sites. Because of the exceedingly low bioaccumulative potential and low reported toxicity of RDX, the presence of this explosive in aquatic systems is unlikely to pose unacceptable risks to invertebrates and fish.


Integrated Environmental Assessment and Management | 2012

Comparing laboratory‐ and field‐measured biota–sediment accumulation factors

Lawrence P. Burkhard; Jon A. Arnot; Michelle R. Embry; Kevin J. Farley; Robert A. Hoke; Masaru Kitano; H.A. Leslie; Guilherme R. Lotufo; Thomas F. Parkerton; Keith Sappington; Gregg T. Tomy; Kent B. Woodburn

Standardized laboratory protocols for measuring the accumulation of chemicals from sediments are used in assessing new and existing chemicals, evaluating navigational dredging materials, and establishing site-specific biota-sediment accumulation factors (BSAFs) for contaminated sediment sites. The BSAFs resulting from the testing protocols provide insight into the behavior and risks associated with individual chemicals. In addition to laboratory measurement, BSAFs can also be calculated from field data, including samples from studies using in situ exposure chambers and caging studies. The objective of this report is to compare and evaluate paired laboratory and field measurement of BSAFs and to evaluate the extent of their agreement. The peer-reviewed literature was searched for studies that conducted laboratory and field measurements of chemical bioaccumulation using the same or taxonomically related organisms. In addition, numerous Superfund and contaminated sediment site study reports were examined for relevant data. A limited number of studies were identified with paired laboratory and field measurements of BSAFs. BSAF comparisons were made between field-collected oligochaetes and the laboratory test organism Lumbriculus variegatus and field-collected bivalves and the laboratory test organisms Macoma nasuta and Corbicula fluminea. Our analysis suggests that laboratory BSAFs for the oligochaete L. variegatus are typically within a factor of 2 of the BSAFs for field-collected oligochaetes. Bivalve study results also suggest that laboratory BSAFs can provide reasonable estimates of field BSAF values if certain precautions are taken, such as ensuring that steady-state values are compared and that extrapolation among bivalve species is conducted with caution.


Environmental Toxicology and Chemistry | 2015

Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles

Jacob K. Stanley; Guilherme R. Lotufo; James M. Biedenbach; Pornsawan Chappell; Kurt A. Gust

An initiative within the US military is targeting the replacement of traditional munitions constituents with insensitive munitions to reduce risk of accidental detonation. The purpose of the present study was to comparatively assess toxicity of the traditional munitions constituents 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) with the new insensitive munitions constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). The following exposure durations were performed with Rana pipiens (leopard frog) tadpoles: TNT and DNAN, 96 h and 28 d; RDX, 10 d and 28 d; NTO, 28 d. The 96-h 50% lethal concentration (LC50) values and 95% confidence intervals for TNT and DNAN were 4.4 mg/L (4.2 mg/L, 4. 7 mg/L) and 24.3 mg/L (21.3 mg/L, 27.6 mg/L), respectively. No significant impacts on survival were observed in the 10-d exposure to RDX up to 25.3 mg/L. Effects on tadpole swimming distance were observed with a lowest-observed-effect concentration (LOEC) of 5.9 mg/L RDX. In the 28-d exposures, the LOECs for survival for TNT, DNAN, and NTO were 0.003 mg/L, 2.4 mg/L, and 5.0 mg/L, respectively. No significant mortality was observed in the RDX chronic 28-d exposure up to the highest treatment level tested of 28.0 mg/L. Neither tadpole developmental stage nor growth was significantly affected in any of the 28-d exposures. Rana pipiens were very sensitive to chronic TNT exposure, with an LOEC 3 orders of magnitude lower than those for insensitive munitions constituents DNAN and NTO.


Ecotoxicology and Environmental Safety | 2010

Toxicity and bioaccumulation of TNT in marine fish in sediment exposures

Guilherme R. Lotufo; William Blackburn; Sydney J. Marlborough; John W. Fleeger

The bioaccumulation potential and toxicity of 2,4,6-trinitrotoluene (TNT) spiked to sediment was evaluated in juvenile sheepshead minnows (JSHM, Cyprinodon variegatus) and adult freckled blennies (FB, Hypsoblennius ionthas). The JSHM were exposed for 4 days in the presence or absence of a mesh separating fish from sediment. FB were exposed to sediment for 7 days. During the 24-day storage period (4 °C), extensive transformation of spiked TNT occurred and concentrations are expressed as the sum of TNT, aminodinitrotoluenes and diaminonitrotoluenes (SumTNT), on a dry weight basis. SumTNT in the overlying water, not exchanged during exposure, increased gradually. Survival was high (≥ 90%) for JSHM exposed to 7 mg kg(-1) and FB exposed to up to 260 mg kg(-1). All SHM died after 24 h exposure to 340 mg kg(-1). Isolation from sediment did not significantly affect water concentrations or decrease bioaccumulation. Uptake from contact to sediment was likely negligible and bioaccumulation was from the overlying water. The feeding rate of FB exposed to 1700 μmol kg(-1) sediment suspended in water for 24-h was significantly reduced by 50%.


Environmental Pollution | 2012

A sediment ecotoxicity assessment platform for in situ measures of chemistry,bioaccumulation and toxicity. Part 1: System description and proof of concept

G. Allen Burton; Gunther Rosen; D. Bart Chadwick; Marc S Greenberg; W. Keith Taulbee; Guilherme R. Lotufo; Danny D. Reible

In situ-based testing using aquatic organisms has been widely reported, but is often limited in scope and practical usefulness in making decisions on ecological risk and remediation. To provide this capability, an integrated deployment system, the Sediment Ecotoxicity Assessment (SEA) Ring was developed, which incorporates rapid in situ hydrological, chemical, bioaccumulation, and toxicological Lines-of-Evidence (LoE) for assessing sediment and overlying water contamination. The SEA Ring system allows for diver-assisted, or diverless, deployment of multiple species of ecologically relevant and indigenous organisms in three different exposures (overlying water, sediment-water interface, and bulk sediment) for periods ranging from two days to three weeks, in a range of water systems. Measured endpoints were both sublethal and lethal effects as well as bioaccumulation. In addition, integrated passive sampling devices for detecting nonpolar organics (solid phase micro-extraction fibers) and metals (diffusive gradients in thin films) provided gradient measures in overlying waters and surficial sediments.


Environmental Pollution | 2012

A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary

Gunther Rosen; D. Bart Chadwick; G. Allen Burton; W. Keith Taulbee; Marc S Greenberg; Guilherme R. Lotufo; Danny D. Reible

A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach.

Collaboration


Dive into the Guilherme R. Lotufo's collaboration.

Top Co-Authors

Avatar

Gunther Rosen

Space and Naval Warfare Systems Center Pacific

View shared research outputs
Top Co-Authors

Avatar

Alan J. Kennedy

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jacob K. Stanley

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery A. Steevens

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Todd S. Bridges

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

James M. Biedenbach

United States Army Corps of Engineers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt A. Gust

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Robert D. George

Space and Naval Warfare Systems Center Pacific

View shared research outputs
Top Co-Authors

Avatar

Jennifer G. Laird

Engineer Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge