Guilian Li
Chinese Center for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guilian Li.
PLOS ONE | 2015
Guilian Li; Jingrui Zhang; Qian Guo; Yi Jiang; Jianhao Wei; Li-li Zhao; Xiuqin Zhao; Jianxin Lu; Kanglin Wan
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis.
PLOS ONE | 2013
Guilian Li; Lulu Lian; Li Wan; Jingrui Zhang; Xiuqin Zhao; Yi Jiang; Li-li Zhao; Haican Liu; Kanglin Wan
In this study, 24 standard nontuberculous mycobacteria (NTM) species strains including 12 slowly growing mycobacteria strains and 12 rapidly growing mycobacteria strains were subjected to drug susceptibility testing using microplate Alamar Blue assay-based 7H9 broth. The most active antimicrobial agents against the 24 NTM strains were streptomycin, amikacin, the fluoroquinolones, and the tetracyclines. Mycobacterium chelonae, Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium simiae are resistant to most antimicrobial agents. The susceptibility results of this study from 24 NTM standard strains can be referenced by clinicians before susceptibility testing for clinical isolates is performed or when conditions do not allow for susceptibility testing. The application of broth-based methods is recommended by the Clinical and Laboratory Standards Institute, and the documentation of the susceptibility patterns of standard strains of mycobacteria can improve the international standardization of susceptibility testing methods.
Antimicrobial Agents and Chemotherapy | 2015
Li-li Zhao; Qing Sun; Haican Liu; Xiao-cui Wu; Tong-yang Xiao; Xiuqin Zhao; Guilian Li; Yi Jiang; Chun-yan Zeng; Kanglin Wan
ABSTRACT Ethambutol (EMB) plays a pivotal role in the chemotherapy of drug-resistant tuberculosis (TB), including multidrug-resistant tuberculosis (MDR-TB). Resistance to EMB is considered to be caused by mutations in the embCAB operon (embC, embA, and embB). In this study, we analyzed the embCAB mutations among 139 MDR-TB isolates from China and found a possible association between embCAB operon mutation and EMB resistance. Our data indicate that 56.8% of MDR-TB isolates are resistant to EMB, and 82.2% of EMB-resistant isolates belong to the Beijing family. Overall, 110 (79.1%) MDR-TB isolates had at least one mutation in the embCAB operon. The majority of mutations were present in the embB gene and the embA upstream region, which also displayed significant correlations with EMB resistance. The most common mutations occurred at codon 306 in embB (embB306), followed by embB406, embA(−16), and embB497. Mutations at embB306 were associated with EMB resistance. DNA sequencing of embB306–497 was the best strategy for detecting EMB resistance, with 89.9% sensitivity, 58.3% specificity, and 76.3% accuracy. Additionally, embB306 had limited value as a candidate predictor for EMB resistance among MDR-TB infections in China.
The Journal of Antibiotics | 2015
Guilian Li; Jingrui Zhang; Qian Guo; Jianhao Wei; Yi Jiang; Xiuqin Zhao; Li-li Zhao; Zhiguang Liu; Jianxin Lu; Kanglin Wan
Rifampicin (RIF) resistance is a risk factor for poor outcome in tuberculosis (TB). In Mycobacterium tuberculosis, both target gene mutation and efflux pumps have major roles in the resistance to anti-TB drugs. This study aimed to determine whether RIF induces efflux pump activation in RIF-monoresistant M. tuberculosis strains. Here, we took advantage of 16 RIF-monoresistant M. tuberculosis clinical isolates to evaluate the expression of 27 putative drug efflux pump genes and measured the influence of four drug efflux pump inhibitors, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), verapamil (VP), thioridazine (TZ) and chlorpromazine (CPZ), on the RIF MICs of these strains. Eight of the 16 RIF-monoresistant isolates carried mutations in rpoB and overexpressed one or two of the following putative efflux pump genes: Rv2333, drrB, drrC, Rv0842, bacA and efpA. CCCP, VP, TZ and CPZ lowered the RIF MICs greater than fourfold in 6, 12, 9 and 12 isolates, respectively. The lowered RIF MICs by VP and CPZ were identical and stronger than CCCP (P-values were all 0.033). In conclusion, the efflux pumps Rv2333, DrrB, DrrC, Rv0842, BacA and EfpA may have a role in RIF resistance in addition to classical mutations in the rpoB gene, and the addition of VP and CPZ could significantly increase RIF susceptibility in RIF-monoresistant M. tuberculosis.
Antimicrobial Agents and Chemotherapy | 2014
Li-li Zhao; Yan Chen; Zhongnan Chen; Haican Liu; Pei-lei Hu; Qing Sun; Xiuqin Zhao; Yi Jiang; Guilian Li; Yunhong Tan; Kanglin Wan
ABSTRACT To determine the prevalence and molecular characteristics of drug-resistant tuberculosis in Hunan province, drug susceptibility testing and spoligotyping methods were performed among 171 M. tuberculosis isolates. In addition, the mutated characteristics of 12 loci, including katG, inhA, rpoB, rpsL, nucleotides 388 to 1084 of the rrs gene [rrs(388–1084)], embB, pncA, tlyA, eis, nucleotides 1158 to 1674 of the rrs gene [rrs(1158–1674)], gyrA, and gyrB, among drug-resistant isolates were also analyzed by DNA sequencing. Our results indicated that the prevalences of isoniazid (INH), rifampin (RIF), streptomycin (SM), ethambutol (EMB), pyrazinamide (PZA), capreomycin (CAP), kanamycin (KAN), amikacin (AKM), and ofloxacin (OFX) resistance in Hunan province were 35.7%, 26.9%, 20.5%, 9.9% 15.2%, 2.3%, 1.8%, 1.2%, and 10.5%, respectively. The previously treated patients presented significantly increased risks for developing drug resistance. The majority of M. tuberculosis isolates belonged to the Beijing family. Almost all the drug resistance results demonstrated no association with genotype. The most frequent mutations of drug-resistant isolates were katG codon 315 (katG315), inhA15, rpoB531, rpoB526, rpoB516, rpsL43, rrs514, embB306, pncA96, rrs1401, gyrA94, and gyrA90. These results contribute to the knowledge of the prevalence of drug resistance in Hunan province and also expand the molecular characteristics of drug resistance in China.
Antimicrobial Agents and Chemotherapy | 2014
Li-li Zhao; Yan Chen; Haican Liu; Qiang Xia; Xiao-cui Wu; Qing Sun; Xiuqin Zhao; Guilian Li; Zhiguang Liu; Kanglin Wan
ABSTRACT To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China.
Journal of Clinical Microbiology | 2013
Yi Jiang; Haican Liu; Haiyin Wang; Xiangfeng Dou; Xiuqin Zhao; Yun Bai; Li Wan; Guilian Li; Wen Zhang; Chen Chen; Kanglin Wan
ABSTRACT We selected 180 clinical isolates of the Mycobacterium tuberculosis complex (MTBC) from patients in China and performed comparative sequence analysis of the mpt64 gene after amplification. From the results, we found that polymorphisms of the mpt64 gene in the MTBC may be the reason for changes in the antigen produced, which may in turn cause alterations of related functions, thereby allowing immune evasion.
PLOS ONE | 2015
Yong Zhao; Guilian Li; Chongyun Sun; Chao Li; Xiaochen Wang; Haican Liu; Pingping Zhang; Xiuqin Zhao; Xinrui Wang; Yi Jiang; Ruifu Yang; Kanglin Wan; Lei Zhou
Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.
Diagnostic Microbiology and Infectious Disease | 2015
Li-li Zhao; Haican Liu; Qing Sun; Tong-yang Xiao; Xiuqin Zhao; Guilian Li; Chun-yan Zeng; Kanglin Wan
We investigated the spectrum and frequency of mutations in rpsL, rrs, and gidB among 140 multidrug-resistant tuberculosis (MDR-TB) clinical isolates from China. The association between mutations and different genotypes was also analyzed. Our data revealed that 65.7% of MDR-TB were resistant to streptomycin (STR), and 90.2% of STR-resistant isolates were Beijing strains. STR resistance was correlated with Beijing family (P=0.00). Compared with phenotypic data, detection of mutations for the combination of these 3 genes exhibited 94.6% sensitivity, 91.7% specificity, and 93.6% accuracy. The most common mutations in STR-resistant isolates were rpsL128, 262, and rrs514, of which rpsL128 showed association with Beijing lineage (P=0.00). A combination of these 3 mutations can serve as the reliable predictors for STR resistance, showing the sensitivity, specificity, and accuracy of 85.9%, 97.9%, and 90.0%, respectively. Furthermore, gidBA276C, not A615G, was Beijing lineage specific. These findings are useful to develop rapid molecular diagnostic methods for STR resistance in China.
International Journal of Antimicrobial Agents | 2015
Li-li Zhao; Qing Sun; Chun-yan Zeng; Yan Chen; Bing Zhao; Haican Liu; Qiang Xia; Xiuqin Zhao; Wei-Wei Jiao; Guilian Li; Kanglin Wan
The emergence of extensively drug-resistant tuberculosis (XDR-TB) in China is a great threat to TB control. To determine the molecular characterisation of XDR-TB isolates from China and the correlations between specific drug resistance-associated mutations and different genotype strains, 58 XDR-TB isolates were sequenced in eight drug loci, including katG, inhA, oxyR-ahpC intergenic region, rpoB, eis, rrs, gyrA and gyrB, and were genotyped using spoligotyping and analysis of the noise transfer function region. Compared with the phenotypic data, the sensitivities and specificities for DNA sequencing were 87.9% and 100.0% for isoniazid (INH), 91.4% and 98.3% for rifampicin (RIF), 60.4% and 100.0% for kanamycin (KAN) and 81.0% and 100.0% for ofloxacin (OFX), respectively. A combination of eight drug loci predicted XDR-TB phenotypes with 53.4% sensitivity (31/58 isolates) and 100.0% specificity. The most frequent mutations among these XDR-TB isolates were katG315 and inhA-15 (for INH), 531, 526 and 516 in rpoB (for RIF), rrs1401 and eis-10 (for KAN) and 94, 90 and 91 in gyrA (for OFX). Also, among these XDR-TB isolates, 44 (75.9%) were identified as Beijing genotype strain, of which 31 (70.5%) belonged to the modern Beijing sublineage. inhA-8, rpoB526 and rpoB531 mutations demonstrated significant statistical associations with ancient and modern Beijing family sublineage (P<0.05). However, Beijing and non-Beijing genotypes showed no association with specific resistance-conferring mutations. These results will be helpful in designing new molecular biology-based techniques to diagnose XDR-TB in China.