Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Chapuis is active.

Publication


Featured researches published by Guillaume Chapuis.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


GigaScience | 2013

Assemblathon 2: evaluating de novo

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T. Roderick Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Archive | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species - eScholarship

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Journal of Computational Biology | 2013

Graphics Processing Unit–Accelerated Quantitative Trait Loci Detection

Guillaume Chapuis; Olivier Filangi; Jean-Michel Elsen; Dominique Lavenier; Pascale Le Roy

Mapping quantitative trait loci (QTL) using genetic marker information is a time-consuming analysis that has interested the mapping community in recent decades. The increasing amount of genetic marker data allows one to consider ever more precise QTL analyses while increasing the demand for computation. Part of the difficulty of detecting QTLs resides in finding appropriate critical values or threshold values, above which a QTL effect is considered significant. Different approaches exist to determine these thresholds, using either empirical methods or algebraic approximations. In this article, we present a new implementation of existing software, QTLMap, which takes advantage of the data parallel nature of the problem by offsetting heavy computations to a graphics processing unit (GPU). Developments on the GPU were implemented using Cuda technology. This new implementation performs up to 75 times faster than the previous multicore implementation, while maintaining the same results and level of precision (Double Precision) and computing both QTL values and thresholds. This speedup allows one to perform more complex analyses, such as linkage disequilibrium linkage analyses (LDLA) and multiQTL analyses, in a reasonable time frame.


parallel processing and applied mathematics | 2011

Parallel and memory-efficient reads indexing for genome assembly

Guillaume Chapuis; Rayan Chikhi; Dominique Lavenier

As genomes, transcriptomes and meta-genomes are being sequenced at a faster pace than ever, there is a pressing need for efficient genome assembly methods. Two practical issues in assembly are heavy memory usage and long execution time during the read indexing phase. In this article, a parallel and memory-efficient method is proposed for reads indexing prior to assembly. Specifically, a hash-based structure that stores a reduced amount of read information is designed. Erroneous entries are filtered on the fly during index construction. A prototype implementation has been designed and applied to actual Illumina short reads. Benchmark evaluation shows that this indexing method requires significantly less memory than those from popular assemblers.


international parallel and distributed processing symposium | 2013

Efficient Multi-GPU Algorithm for All-Pairs Shortest Paths

Guillaume Chapuis; Hristo Djidjev; Rumen Andonov; Sunil Thulasidasan; Dominique Lavenier


Archive | 2012

GPU accelerated QTL detection

Guillaume Chapuis; Olivier Filangi; J. M. Elsen; Dominique Lavenier; P. Le Roy


arXiv: Quantum Physics | 2016

Efficient Combinatorial Optimization Using Quantum Annealing

Hristo Djidjev; Guillaume Chapuis; Georg Hahn; Guillaume Rizk


Archive | 2014

Multi-GPU Algorithm for All-Pairs Shortest Paths

Guillaume Chapuis; Hristo Djidjev; Rumen Andonov; Sunil Thulasidasan; Dominique Lavenier

Collaboration


Dive into the Guillaume Chapuis's collaboration.

Top Co-Authors

Avatar

Dominique Lavenier

École normale supérieure de Cachan

View shared research outputs
Top Co-Authors

Avatar

Rayan Chikhi

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Olivier Filangi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dent Earl

University of California

View shared research outputs
Top Co-Authors

Avatar

Isaac Ho

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Joseph Fass

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith Bradnam

University of California

View shared research outputs
Top Co-Authors

Avatar

Inanc Birol

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuno A. Fonseca

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge