Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isaac Ho is active.

Publication


Featured researches published by Isaac Ho.


Nature Biotechnology | 2008

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).

Diego Martinez; Randy M. Berka; Bernard Henrissat; Markku Saloheimo; Mikko Arvas; Scott E. Baker; Jarod Chapman; Olga Chertkov; Pedro M. Coutinho; Dan Cullen; Etienne Danchin; Igor V. Grigoriev; Paul Harris; Melissa Jackson; Christian P. Kubicek; Cliff Han; Isaac Ho; Luis F. Larrondo; Alfredo Lopez de Leon; Jon K. Magnuson; Sandy Merino; Monica Misra; Beth Nelson; Nicholas H. Putnam; Barbara Robbertse; Asaf Salamov; Monika Schmoll; Astrid Terry; Nina Thayer; Ann Westerholm-Parvinen

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Nature | 2004

The DNA sequence and biology of human chromosome 19

Jane Grimwood; Laurie Gordon; Anne S. Olsen; Astrid Terry; Jeremy Schmutz; Jane Lamerdin; Uffe Hellsten; David Goodstein; Olivier Couronne; Mary Tran-Gyamfi; Andrea Aerts; Michael R. Altherr; Linda Ashworth; Eva Bajorek; Stacey Black; Elbert Branscomb; Sean Caenepeel; Anthony Carrano; Yee Man Chan; Mari Christensen; Catherine A. Cleland; Alex Copeland; Eileen Dalin; Paramvir Dehal; Mirian Denys; John C. Detter; Julio Escobar; Dave Flowers; Dea Fotopulos; Carmen Garcia

Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.


PLOS ONE | 2011

Meraculous: De Novo Genome Assembly with Short Paired-End Reads

Jarrod Chapman; Isaac Ho; Sirisha Sunkara; Shujun Luo; Gary P. Schroth; Daniel S. Rokhsar

We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ∼280 bp or ∼3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed.


Genome Biology | 2010

Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses

Kankshita Swaminathan; Magdy S. Alabady; Kranthi Varala; Emanuele De Paoli; Isaac Ho; Dan S. Rokhsar; Aru K. Arumuganathan; Ray Ming; Pamela J. Green; Blake C. Meyers; Stephen P. Moose; Matthew E. Hudson

BackgroundMiscanthus × giganteus (Mxg) is a perennial grass that produces superior biomass yields in temperate environments. The essentially uncharacterized triploid genome (3n = 57, x = 19) of Mxg is likely critical for the rapid growth of this vegetatively propagated interspecific hybrid.ResultsA survey of the complex Mxg genome was conducted using 454 pyrosequencing of genomic DNA and Illumina sequencing-by-synthesis of small RNA. We found that the coding fraction of the Mxg genome has a high level of sequence identity to that of other grasses. Highly repetitive sequences representing the great majority of the Mxg genome were predicted using non-cognate assembly for de novo repeat detection. Twelve abundant families of repeat were observed, with those related to either transposons or centromeric repeats likely to comprise over 95% of the genome. Comparisons of abundant repeat sequences to a small RNA survey of three Mxg organs (leaf, rhizome, inflorescence) revealed that the majority of observed 24-nucleotide small RNAs are derived from these repetitive sequences. We show that high-copy-number repeats match more of the small RNA, even when the amount of the repeat sequence in the genome is accounted for.ConclusionsWe show that major repeats are present within the triploid Mxg genome and are actively producing small RNAs. We also confirm the hypothesized origins of Mxg, and suggest that while the repeat content of Mxg differs from sorghum, the sorghum genome is likely to be of utility in the assembly of a gene-space sequence of Mxg.


GigaScience | 2013

Assemblathon 2: evaluating de novo

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T. Roderick Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Archive | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species - eScholarship

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Science | 2002

The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins.

Paramvir Dehal; Yutaka Satou; Robert K. Campbell; Jarrod Chapman; Bernard M. Degnan; Anthony W. De Tomaso; Brad Davidson; Anna Di Gregorio; Maarten Gelpke; David Goodstein; Naoe Harafuji; Kenneth E. M. Hastings; Isaac Ho; Kohji Hotta; Wayne Huang; Takeshi Kawashima; Patrick Lemaire; Diego Martinez; Ian A. Meinertzhagen; Simona Necula; Masaru Nonaka; Nik Putnam; Sam Rash; Hidetoshi Saiga; Masanobu Satake; Astrid Terry; Lixy Yamada; Hong-Gang Wang; Satoko Awazu; Kaoru Azumi


Science | 2002

Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes

Samuel Aparicio; Jarrod Chapman; Elia Stupka; Nik Putnam; Jer-ming Chia; Paramvir Dehal; Alan Christoffels; Sam Rash; Shawn Hoon; Arian Smit; Maarten Gelpke; Jared C. Roach; Tania Oh; Isaac Ho; Marie Wong; Chris Detter; Frans Verhoef; Paul Predki; Alice Tay; Susan Lucas; Paul M. Richardson; Sarah Smith; Melody S. Clark; Yvonne J. K. Edwards; Norman A. Doggett; Andrey Zharkikh; Sean V. Tavtigian; Dmitry Pruss; Mary Barnstead; Cheryl Evans

Collaboration


Dive into the Isaac Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Terry

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dent Earl

University of California

View shared research outputs
Top Co-Authors

Avatar

Joseph Fass

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith Bradnam

University of California

View shared research outputs
Top Co-Authors

Avatar

Rayan Chikhi

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Guillaume Chapuis

École normale supérieure de Cachan

View shared research outputs
Top Co-Authors

Avatar

Inanc Birol

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge