Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Dalmasso is active.

Publication


Featured researches published by Guillaume Dalmasso.


PLOS ONE | 2009

Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis

Yutao Yan; Vasantha L. Kolachala; Guillaume Dalmasso; Hang Nguyen; Hamed Laroui; Shanthi V. Sitaraman; Didier Merlin

Background Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohns disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase. Methods C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon. Results As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon. Conclusion Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.


Gastroenterology | 2010

Drug-Loaded Nanoparticles Targeted to the Colon With Polysaccharide Hydrogel Reduce Colitis in a Mouse Model

Hamed Laroui; Guillaume Dalmasso; Hang Thi Thu Nguyen; Yutao Yan; Shanthi V. Sitaraman; Didier Merlin

BACKGROUND & AIMS One of the challenges to treating inflammatory bowel disease (IBD) is to target the site of inflammation. We engineered nanoparticles (NPs) to deliver an anti-inflammatory tripeptide Lys-Pro-Val (KPV) to the colon and assessed its therapeutic efficacy in a mouse model of colitis. METHODS NPs were synthesized by double-emulsion/solvent evaporation. KPV was loaded into the NPs during the first emulsion of the synthesis process. To target KPV to the colon, loaded NPs (NP-KPV) were encapsulated into a polysaccharide gel containing 2 polymers: alginate and chitosan. The effect of KPV-loaded NPs on inflammatory parameters was determined in vitro as well as in the dextran sodium sulfate-induced colitis mouse model. RESULTS NPs (400 nm) did not affect cell viability or barrier functions. A swelling degree study showed that alginate-chitosan hydrogel containing dextran-fluorescein isothiocyanate-labeled NPs collapsed in the colon. Once delivered, NPs quickly released KPV on or within the closed area of colonocytes. The inflammatory responses to lipopolysaccharide were reduced in Caco2-BBE (brush border enterocyte) cells exposed to NP-KPV compared with those exposed to NPs alone, in a dose-dependent fashion. Mice given dextran sodium sulfate (DSS) followed by NP-KPV were protected against inflammatory and histologic parameters, compared with mice given only DSS. CONCLUSIONS Nanoparticles are a versatile drug delivery system that can overcome physiologic barriers and target anti-inflammatory agents such as the peptide KPV to inflamed areas. By using NPs, KPV can be delivered at a concentration that is 12,000-fold lower than that of KPV in free solution, but with similar therapeutic efficacy. Administration of encapsulated drug-loaded NPs is a novel therapeutic approach for IBD.


Biomaterials | 2011

Functional TNFα Gene Silencing Mediated by Polyethyleneimine/TNFα siRNA Nanocomplexes in Inflamed colon

Hamed Laroui; Arianne L. Theiss; Yutao Yan; Guillaume Dalmasso; Hang T.T. Nguyen; Shanthi V. Sitaraman; Didier Merlin

During inflammatory bowel disease, TNFα is the major pro-inflammatory cytokine mainly secreted from macrophages and dendritic cells. Here, we have demonstrated that TNFα siRNA/polyethyleneimine loaded into polylactide at an optimal concentration of 20 g/L nanoparticles covered with polyvinyl alcohol are efficiently taken up by inflamed macrophages and inhibit TNFα secretion by the macrophages. Those nanoparticles have a diameter of ∼380 nm and zeta potential of -8 mV at pH 7.2, and are non-cytotoxic. Complexation, interactions and protection from RNAse between TNFα siRNA and polyethyleneimine were higher than those using chitosan. Importantly, complexation between TNFα siRNA and polyethyleneimine facilitated higher rates of siRNA loading into nanoparticles, compared to Chi or free siRNA mixed with Lipofectamine. Oral administration of encapsulated TNFα siRNA-loaded nanoparticles specifically reduced the TNFα expression/secretion in colonic tissue in LPS-treated mice. In conclusion, we have shown: (1) that proposed TNFα siRNA-loaded NPs are prepared via a non-denaturing synthetic process; (2) a high encapsulation rate of TNFα siRNA complexed to polyethyleneimine into NPs; (3) effective enzymatic protection of TNFα siRNA by polyethyleneimine; (4) non-cytotoxicity and biodegradability of nanoparticles loaded with polyethyleneimine/TNFα siRNA; and (5) in vitro and in vivo significant anti-inflammatory effects at low TNFα siRNA dose that is specific and restricted to the colonic cells. Our results collectively indicate that polyethyleneimine/TNFα siRNA nanocomplexes represent an efficient therapeutic option for diseases such as IBD.


PLOS ONE | 2011

Microbiota Modulate Host Gene Expression via MicroRNAs

Guillaume Dalmasso; Hang Thi Thu Nguyen; Yutao Yan; Hamed Laroui; Moiz A. Charania; Saravanan Ayyadurai; Shanthi V. Sitaraman; Didier Merlin

Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3′-untranslated regions (3′-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3′-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression.


PLOS ONE | 2008

Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

Guillaume Dalmasso; Hang Thi Thu Nguyen; Yutao Yan; Laetitia Charrier-Hisamuddin; Shanthi V. Sitaraman; Didier Merlin

Background PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. Results We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1) promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by ∼2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. Conclusions Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.


Gastroenterology | 2011

The PepT1–NOD2 Signaling Pathway Aggravates Induced Colitis in Mice

Guillaume Dalmasso; Hang Thi Thu Nguyen; Sarah A. Ingersoll; Saravanan Ayyadurai; Hamed Laroui; Moiz A. Charania; Yutao Yan; Shanthi V. Sitaraman; Didier Merlin

BACKGROUND & AIMS The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1. METHODS Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway. RESULTS TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner. CONCLUSIONS The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.


Gastroenterology | 2009

Pathogenic Bacteria Induce Colonic PepT1 Expression: An Implication in Host Defense Response

Hang Thi Thu Nguyen; Guillaume Dalmasso; Kimberly R. Powell; Yutao Yan; Shantanu Bhatt; Daniel Kalman; Shanthi V. Sitaraman; Didier Merlin

BACKGROUND & AIMS Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions; however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. METHODS Human colonic HT29-Cl.19A cells were infected with the attaching and effacing enteropathogenic Escherichia coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine attaching and effacing pathogen related to EPEC. RESULTS EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of nuclear factor-kappaB and mitogen-activated protein kinase and production of interleukin-8. Accordingly, ex vivo and in vivo experiments revealed that C rodentium induced colonic PepT1 expression and that, compared with their wild-type counterparts, PepT1 transgenic mice infected with C rodentium exhibited decreased bacterial colonization, production of proinflammatory cytokines, and neutrophil infiltration into the colon. CONCLUSIONS Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathologic conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation.


Journal of Immunology | 2011

Overexpression of Ste20-Related Proline/Alanine-Rich Kinase Exacerbates Experimental Colitis in Mice

Yutao Yan; Hamed Laroui; Sarah A. Ingersoll; Saravanan Ayyadurai; Moiz A. Charania; Stephen Yang; Guillaume Dalmasso; Tracy S. Obertone; Hang Nguyen; Shanthi V. Sitaraman; Didier Merlin

Inflammatory bowel disease, mainly Crohn’s disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease.


Gastroenterology | 2011

Notch1 regulates the effects of matrix metalloproteinase-9 on colitis-associated cancer in mice.

Pallavi Garg; Sabrina Jeppsson; Guillaume Dalmasso; Amr M. Ghaleb; Beth B. McConnell; Vincent W. Yang; Andrew T. Gewirtz; Didier Merlin; Shanthi V. Sitaraman

BACKGROUND & AIMS Inflammatory bowel disease increases the risks of colon cancer and colitis-associated cancer (CAC). Epithelial cell-derived matrix metalloproteinase (MMP)-9 mediates inflammation during acute colitis and the cleavage and activation of the transcription factor Notch1, which prevents differentiation of progenitor cells into goblet cells. However, MMP-9 also protects against the development of CAC and acts as a tumor suppressor. We investigated the mechanisms by which MMP-9 protects against CAC in mice. METHODS C57/B6 wild-type mice were given a single dose of azoxymethane and 2 cycles of dextran sulfate sodium (DSS). Mice were also given the γ-secretase inhibitor difluorophenacetyl-l-alanyl-S-phenylglycine t-butyl ester (DAPT) or dimethyl sulfoxide (control) during each DSS cycle; they were killed on day 56. We analyzed embryonic fibroblasts isolated from wild-type and MMP-9-/- mice and HCT116 cells that were stably transfected with MMP-9. RESULTS Wild-type mice were more susceptible to CAC following inhibition of Notch1 by DAPT, shown by increased numbers of tumors and level of dysplasia compared with controls. Inhibition of Notch1 signaling significantly reduced protein levels of active Notch1, p53, p21WAF1/Cip1, Bax-1, active caspase-3, as well as apoptosis, compared with controls. Similar results were observed in transgenic HCT116 cells and embryonic fibroblasts from MMP-9-/- mice on γ-radiation-induced damage of DNA. CONCLUSIONS MMP-9 mediates Notch1 signaling via p53 to regulate apoptosis, cell cycle arrest, and inflammation. By these mechanisms, it might prevent CAC.


PLOS ONE | 2008

Ecto-Phosphorylation of CD98 Regulates Cell-Cell Interactions

Hang Thi Thu Nguyen; Guillaume Dalmasso; Yutao Yan; Tracy S. Obertone; Shanthi V. Sitaraman; Didier Merlin

Ecto-phosphorylation plays an important role in many cellular functions. The transmembrane glycoprotein CD98 contains potential phosphorylation sites in its extracellular C-terminal tail. We hypothesized that extracellular signaling through ecto-protein kinases (ePKs) might lead to ecto-phosphorylation of CD98 and influence its multiple functions, including its role in cell-cell interactions. Our results show that recombinant CD98 was phosphorylated in vitro by ePKs from Jurkat cells and by the commercial casein kinase 2 (CK2). Alanine substitutions at serines-305/307/309 or serines-426/430 attenuated CK2-mediated CD98 phosphorylation, suggesting that these residues are the dominant phosphorylation sites for CK2. Furthermore, CD98 expressed in the basolateral membranes of intestinal epithelial Caco2-BBE cells was ecto-phosphorylated by Jurkat cell-derived ePKs and ecto-CK2 was involved in this process. Importantly, cell attachment studies showed that the ecto-phosphorylation of CD98 enhanced heterotypic cell-cell interactions and that the extracellular domain of CD98, which possesses the serine phosphorylation sites, was crucial for this effect. In addition, phosphorylation of recombinant CD98 increased its interactions with Jurkat and Caco2-BBE cells, and promoted cell attachment and spreading. In conclusion, here we demonstrated the ecto-phosphorylation of CD98 by ePKs and its functional importance in cell-cell interactions. Our findings reveal a novel mechanism involved in regulating the multiple functions of CD98 and raise CD98 as a promising target for therapeutic modulations of cell-cell interactions.

Collaboration


Dive into the Guillaume Dalmasso's collaboration.

Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge