Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamed Laroui is active.

Publication


Featured researches published by Hamed Laroui.


PLOS ONE | 2009

Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis

Yutao Yan; Vasantha L. Kolachala; Guillaume Dalmasso; Hang Nguyen; Hamed Laroui; Shanthi V. Sitaraman; Didier Merlin

Background Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohns disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase. Methods C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon. Results As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon. Conclusion Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.


Gastroenterology | 2010

Drug-Loaded Nanoparticles Targeted to the Colon With Polysaccharide Hydrogel Reduce Colitis in a Mouse Model

Hamed Laroui; Guillaume Dalmasso; Hang Thi Thu Nguyen; Yutao Yan; Shanthi V. Sitaraman; Didier Merlin

BACKGROUND & AIMS One of the challenges to treating inflammatory bowel disease (IBD) is to target the site of inflammation. We engineered nanoparticles (NPs) to deliver an anti-inflammatory tripeptide Lys-Pro-Val (KPV) to the colon and assessed its therapeutic efficacy in a mouse model of colitis. METHODS NPs were synthesized by double-emulsion/solvent evaporation. KPV was loaded into the NPs during the first emulsion of the synthesis process. To target KPV to the colon, loaded NPs (NP-KPV) were encapsulated into a polysaccharide gel containing 2 polymers: alginate and chitosan. The effect of KPV-loaded NPs on inflammatory parameters was determined in vitro as well as in the dextran sodium sulfate-induced colitis mouse model. RESULTS NPs (400 nm) did not affect cell viability or barrier functions. A swelling degree study showed that alginate-chitosan hydrogel containing dextran-fluorescein isothiocyanate-labeled NPs collapsed in the colon. Once delivered, NPs quickly released KPV on or within the closed area of colonocytes. The inflammatory responses to lipopolysaccharide were reduced in Caco2-BBE (brush border enterocyte) cells exposed to NP-KPV compared with those exposed to NPs alone, in a dose-dependent fashion. Mice given dextran sodium sulfate (DSS) followed by NP-KPV were protected against inflammatory and histologic parameters, compared with mice given only DSS. CONCLUSIONS Nanoparticles are a versatile drug delivery system that can overcome physiologic barriers and target anti-inflammatory agents such as the peptide KPV to inflamed areas. By using NPs, KPV can be delivered at a concentration that is 12,000-fold lower than that of KPV in free solution, but with similar therapeutic efficacy. Administration of encapsulated drug-loaded NPs is a novel therapeutic approach for IBD.


Biomaterials | 2011

Functional TNFα Gene Silencing Mediated by Polyethyleneimine/TNFα siRNA Nanocomplexes in Inflamed colon

Hamed Laroui; Arianne L. Theiss; Yutao Yan; Guillaume Dalmasso; Hang T.T. Nguyen; Shanthi V. Sitaraman; Didier Merlin

During inflammatory bowel disease, TNFα is the major pro-inflammatory cytokine mainly secreted from macrophages and dendritic cells. Here, we have demonstrated that TNFα siRNA/polyethyleneimine loaded into polylactide at an optimal concentration of 20 g/L nanoparticles covered with polyvinyl alcohol are efficiently taken up by inflamed macrophages and inhibit TNFα secretion by the macrophages. Those nanoparticles have a diameter of ∼380 nm and zeta potential of -8 mV at pH 7.2, and are non-cytotoxic. Complexation, interactions and protection from RNAse between TNFα siRNA and polyethyleneimine were higher than those using chitosan. Importantly, complexation between TNFα siRNA and polyethyleneimine facilitated higher rates of siRNA loading into nanoparticles, compared to Chi or free siRNA mixed with Lipofectamine. Oral administration of encapsulated TNFα siRNA-loaded nanoparticles specifically reduced the TNFα expression/secretion in colonic tissue in LPS-treated mice. In conclusion, we have shown: (1) that proposed TNFα siRNA-loaded NPs are prepared via a non-denaturing synthetic process; (2) a high encapsulation rate of TNFα siRNA complexed to polyethyleneimine into NPs; (3) effective enzymatic protection of TNFα siRNA by polyethyleneimine; (4) non-cytotoxicity and biodegradability of nanoparticles loaded with polyethyleneimine/TNFα siRNA; and (5) in vitro and in vivo significant anti-inflammatory effects at low TNFα siRNA dose that is specific and restricted to the colonic cells. Our results collectively indicate that polyethyleneimine/TNFα siRNA nanocomplexes represent an efficient therapeutic option for diseases such as IBD.


Journal of Biological Chemistry | 2010

MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation.

Hang Thi Thu Nguyen; Guillaume Dalmasso; Yutao Yan; Hamed Laroui; Stephanie Dahan; Lloyd Mayer; Shanthi V. Sitaraman; Didier Merlin

The transmembrane glycoprotein CD98 regulates multiple cellular functions, including extracellular signaling, epithelial cell adhesion/polarity, amino acid transport, and cell-cell interactions. MicroRNAs post-transcriptionally regulate gene expression, thereby functioning as modulators of numerous cellular processes, such as cell differentiation, proliferation, and apoptosis. Here, we investigated if microRNAs regulate CD98 expression during intestinal epithelial cell differentiation and inflammation. We found that microRNA-7 repressed CD98 expression in Caco2-BBE cells by directly targeting the 3′-untranslated region of human CD98 mRNA. Expression of CD98 was decreased, whereas that of microRNA-7 was increased in well-differentiated Caco2-BBE cells compared with undifferentiated cells. Undifferentiated crypt cells isolated from mouse jejunum showed higher CD98 levels and lower levels of mmu-microRNA-706, a murine original microRNA candidate for CD98, than well-differentiated villus cells. Importantly, microRNA-7 decreased Caco2-BBE cell attachment on laminin-1, and CD98 overexpression recovered this inhibition, suggesting that microRNA-7 modulates epithelial cell adhesion to extracellular matrix, which in turn could affect proliferation and differentiation during the migration of enterocytes across the crypt-villus axis, by regulating CD98 expression. In a pathological context, the pro-inflammatory cytokine interleukin 1-β increased CD98 expression in Caco2-BBE cells by decreasing microRNA-7 levels. Consistent with the in vitro findings, microRNA-7 levels were decreased in actively inflamed Crohn disease colonic tissues, where CD98 expression was up-regulated, compared with normal tissues. Together, these results reveal a novel mechanism underlying regulation of CD98 expression during patho-physiological states. This study raises microRNAs as a promising target for therapeutic modulations of CD98 expression in intestinal inflammatory disorders.


PLOS ONE | 2011

Microbiota Modulate Host Gene Expression via MicroRNAs

Guillaume Dalmasso; Hang Thi Thu Nguyen; Yutao Yan; Hamed Laroui; Moiz A. Charania; Saravanan Ayyadurai; Shanthi V. Sitaraman; Didier Merlin

Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3′-untranslated regions (3′-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3′-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression.


Journal of Clinical Investigation | 2011

CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice

Hang Thi Thu Nguyen; Guillaume Dalmasso; Leif Törkvist; Jonas Halfvarson; Yutao Yan; Hamed Laroui; Doron Shmerling; Tiziano Tallone; Mauro D'Amato; Shanthi V. Sitaraman; Didier Merlin

Expression of the transmembrane glycoprotein CD98 (encoded by SLC3A2) is increased in intestinal inflammatory conditions, such as inflammatory bowel disease (IBD), and in various carcinomas, yet its pathogenetic role remains unknown. By generating gain- and loss-of-function mouse models with genetically manipulated CD98 expression specifically in intestinal epithelial cells (IECs), we explored the role of CD98 in intestinal homeostasis, inflammation, and colitis-associated tumorigenesis. IEC-specific CD98 overexpression induced gut homeostatic defects and increased inflammatory responses to DSS-induced colitis, promoting colitis-associated tumorigenesis in mice. Further analysis indicated that the ability of IEC-specific CD98 overexpression to induce tumorigenesis was linked to its capacity to induce barrier dysfunction and to stimulate cell proliferation and production of proinflammatory mediators. To validate these results, we constructed mice carrying conditional floxed Slc3a2 alleles and crossed them with Villin-Cre mice such that CD98 was downregulated only in IECs. These mice exhibited attenuated inflammatory responses and resistance to both DSS-induced colitis and colitis-associated tumorigenesis. Together, our data show that intestinal CD98 expression has a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in IECs therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as IBD and colitis-associated cancer.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease

Sarah A. Ingersoll; Saravanan Ayyadurai; Moiz A. Charania; Hamed Laroui; Yutao Yan; Didier Merlin

Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation. In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes. However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all. Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors. In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease. It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon.


Journal of Biological Chemistry | 2011

L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1.

Hamed Laroui; Yutao Yan; Yoshie Narui; Sarah A. Ingersoll; Saravanan Ayyadurai; Moiz A. Charania; Feimeng Zhou; Binghe Wang; Khalid Salaita; Shanthi V. Sitaraman; Didier Merlin

The oligopeptide transporter PepT1 expressed in inflamed colonic epithelial cells transports small bacterial peptides, such as muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (Tri-DAP) into cells. The innate immune system uses various proteins to sense pathogen-associated molecular patterns. Nucleotide-binding oligomerization domain (NOD)-like receptors of which there are more than 20 related family members are present in the cytosol and recognize intracellular ligands. NOD proteins mediate NF-κB activation via receptor-interacting serine/threonine-protein kinase 2 (RICK or RIPK). The specific ligands for some NOD-like receptors have been identified. NOD type 1 (NOD1) is activated by peptides that contain a diaminophilic acid, such as the PepT1 substrate Tri-DAP. In other words, PepT1 transport activity plays an important role in controlling intracellular loading of ligands for NOD1 in turn determining the activation level of downstream inflammatory pathways. However, no direct interaction between Tri-DAP and NOD1 has been identified. In the present work, surface plasmon resonance and atomic force microscopy experiments showed direct binding between NOD1 and Tri-DAP with a Kd value of 34.5 μm. In contrast, no significant binding was evident between muramyl dipeptide and NOD1. Furthermore, leucine-rich region (LRR)-truncated NOD1 did not interact with Tri-DAP, indicating that Tri-DAP interacts with the LRR domain of NOD1. Next, we examined binding between RICK and NOD1 proteins and found that such binding was significant with a Kd value of 4.13 μm. However, NOD1/RICK binding was of higher affinity (Kd of 3.26 μm) when NOD1 was prebound to Tri-DAP. Furthermore, RICK phosphorylation activity was increased when NOD was prebound to Tri-DAP. In conclusion, we have shown that Tri-DAP interacts directly with the LRR domain of NOD1 and consequently increases RICK/NOD1 association and RICK phosphorylation activity.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Nanomedicine in GI

Hamed Laroui; David Scott Wilson; Guillaume Dalmasso; Khalid Salaita; Niren Murthy; Shanthi V. Sitaraman; Didier Merlin

Recent advances in nanotechnology offer new hope for disease detection, prevention, and treatment. Nanomedicine is a rapidly evolving field wherein targeted therapeutic approaches using nanotechnology based on the pathophysiology of gastrointestinal diseases are being developed. Nanoparticle vectors capable of delivering drugs specifically and exclusively to regions of the gastrointestinal tract affected by disease for a prolonged period of time are likely to significantly reduce the side effects of existing otherwise effective treatments. This review aims at integrating various applications of the most recently developed nanomaterials that have tremendous potential for the detection and treatment of gastrointestinal diseases.


Gastroenterology | 2011

The PepT1–NOD2 Signaling Pathway Aggravates Induced Colitis in Mice

Guillaume Dalmasso; Hang Thi Thu Nguyen; Sarah A. Ingersoll; Saravanan Ayyadurai; Hamed Laroui; Moiz A. Charania; Yutao Yan; Shanthi V. Sitaraman; Didier Merlin

BACKGROUND & AIMS The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1. METHODS Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway. RESULTS TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner. CONCLUSIONS The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.

Collaboration


Dive into the Hamed Laroui's collaboration.

Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Dalmasso

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Xiao

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Thi Thu Nguyen

Université Paul Cézanne Aix-Marseille III

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge