Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Grenier is active.

Publication


Featured researches published by Guillaume Grenier.


Atherosclerosis | 2009

A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux

Hicham Berrougui; Guillaume Grenier; Soumaya Loued; Geneviève Drouin; Abdelouahed Khalil

Resveratrol, a polyphenolic constituent of red wine, is known for its anti-atherogenic properties and is thought to be beneficial in reducing the incidence of cardiovascular diseases (CVD). However, the mechanism of action by which it exerts its anti-atherogenic effect remains unclear. In this study, we investigated the relationship between the antioxidant effects of resveratrol and its ability to promote cholesterol efflux. We measured the formation of conjugated dienes and the rate of lipid peroxidation, and observed that resveratrol inhibited copper- and irradiation-induced LDL and HDL oxidation as observed by a reduction in oxidation rate and an increase in the lag phase (p<0.05). We used DPPH screening to measure free radical scavenging activity and observed that resveratrol (0-50microM) significantly reduced the content of free radicals (p<0.001). Respect to its effect on cholesterol homeostasis, resveratrol also enhanced apoA-1-mediated cholesterol efflux (r(2)=0.907, p<0.05, linear regression) by up-regulating ABCA-1 receptors, and reduced cholesterol influx or uptake in J774 macrophages (r(2)=0.89, p<0.05, linear regression). Incubation of macrophages (J774, THP-1 and MPM) with Fe/ascorbate ion, attenuated apoA-1 and HDL(3)-mediated cholesterol efflux whereas resveratrol (0-25microM) significantly redressed this attenuation in a dose-dependent manner (p<0.001). Resveratrol thus appears to be a natural antioxidant that enhances cholesterol efflux. These properties make it a potential natural antioxidant that could be used to prevent and treat CVD.


Cytokine & Growth Factor Reviews | 2009

Cell responses to bone morphogenetic proteins and peptides derived from them: Biomedical applications and limitations

Helena Senta; Park H; Eric Bergeron; Olivier Drevelle; D. Fong; Élisabeth Leblanc; François Cabana; Sophie Roux; Guillaume Grenier; Nathalie Faucheux

The bone morphogenetic proteins (BMPs) are cytokines of the transforming growth factor beta family. Some BMPs such as BMP-2 and BMP-7 play a major role in the development of the skeleton and the maintenance of homeostasis during bone remodelling. To date, only BMP-2 and BMP-7 have been approved by the Food and Drug Administration for specific orthopaedic applications. However, due to BMP cost, peptides derived from their knuckle epitope with osteogenic properties have been developed. BMPs are involved in many other biological events, including embryogenesis, angiogenesis and cancer. BMPs therefore have great biomedical potential as osteogenic factors and as anti-cancer agents. This review focuses on the use of BMPs and their derived peptides in biomedical delivery systems and gene therapy.


Stem Cells | 2007

Resident Endothelial Precursors in Muscle, Adipose, and Dermis Contribute to Postnatal Vasculogenesis

Guillaume Grenier; Anthony Scimè; Fabien Le Grand; Atsushi Asakura; Carolina Perez-Iratxeta; Miguel A. Andrade-Navarro; Patricia A. Labosky; Michael A. Rudnicki

A novel population of tissue‐resident endothelial precursors (TEPs) was isolated from small blood vessels in dermal, adipose, and skeletal muscle of mouse based on their ability to be grown as spheres. Cellular and molecular analyses of these cells revealed that they were highly related regardless of the tissue of origin and distinct from embryonic neural stem cells. Notably, TEPs did not express hematopoietic markers, but they expressed numerous characteristics of angiogenic precursors and their differentiated progeny, such as CD34, Flk‐1, Tie‐1, CD31, and vascular endothelial cadherin (VE‐cadherin). TEPs readily differentiated into endothelial cells in newly formed vascular networks following transplantation into regenerating skeletal muscle. Taken together, these experiments suggest that TEPs represent a novel class of endothelial precursors that are closely associated with small blood vessels in muscle, adipose, and dermal tissue. This finding is of particular interest since it could bring new insight in cancer angiogenesis and collateral blood vessels developed following ischemia.


Journal of Bone and Mineral Research | 2011

BMP‐9‐induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment

Élisabeth Leblanc; Frédéric Trensz; Sonia Haroun; Geneviève Drouin; Eric Bergeron; Christopher M Penton; Federica Montanaro; Sophie Roux; Nathalie Faucheux; Guillaume Grenier

Heterotopic ossification (HO) is defined as the formation of bone inside soft tissue. Symptoms include joint stiffness, swelling, and pain. Apart from the inherited form, the common traumatic form generally occurs at sites of injury in damaged muscles and is often associated with brain injury. We investigated bone morphogenetic protein 9 (BMP‐9), which possesses a strong osteoinductive capacity, for its involvement in muscle HO physiopathology. We found that BMP‐9 had an osteoinductive influence on mouse muscle resident stromal cells by increasing their alkaline phosphatase activity and bone‐specific marker expression. Interestingly, BMP‐9 induced HO only in damaged muscle, whereas BMP‐2 promoted HO in skeletal muscle regardless of its state. The addition of the soluble form of the ALK1 protein (the BMP‐9 receptor) significantly inhibited the osteoinductive potential of BMP‐9 in cells and HO in damaged muscles. BMP‐9 thus should be considered a candidate for involvement in HO physiopathology, with its activity depending on the skeletal muscle microenvironment.


Journal of Applied Physiology | 2009

A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse

Annabelle Z. Caron; Geneviève Drouin; Justine Desrosiers; Frédéric Trensz; Guillaume Grenier

Skeletal muscle atrophy is a serious concern for patients afflicted by limb restriction due to surgery (e.g., arthrodesis), several articular pathologies (e.g., arthralgia), or simply following cast immobilization. To study the molecular events involved in this immobilization-induced debilitating condition, a convenient mouse model for atrophy is lacking. Here we provide a new immobilization procedure exploiting the normal flexion of the mouse hindlimb using a surgical staple to fix the ventral part of the foot to the distal part of the calf. Histological analysis revealed that our approach induced significant skeletal muscle atrophy by reducing the myofiber size of the tibialis anterior (TA) muscle by 36% compared with the untreated contralateral TA within a few days postimmobilization. Two molecular markers for atrophy, atrogin-1/muscle atrophy F-box (atrogin-1/MAFbx) and muscle ring finger 1 (MuRF-1) mRNAs, were significantly upregulated by 1.9- and 5.9-fold, respectively. Interestingly, our model also revealed the presence of an early inflammatory process during atrophy, characterized by the mRNA upregulation of TNF-alpha, IL-1, and IL-6 (1.9-, 2.4-, and 3.4-fold, respectively) simultaneously with the upregulation of the common leukocyte marker CD45 (6.1-fold). Moreover, muscle rapidly recovered on remobilization, an event associated with significantly increased levels of uncoupling protein-3 and peroxisome proliferator-activated receptor gamma coactivator-1alpha mRNA, key components of prooxidative muscle metabolism. This model offers unexpected new insights into the molecular events involved in immobilization atrophy.


Journal of Lipid Research | 2007

Age-related impairment of HDL-mediated cholesterol efflux.

Hicham Berrougui; Maxim Isabelle; Martin Cloutier; Guillaume Grenier; Abdelouahed Khalil

Our aim in this study was to investigate the effect of aging on the capacity of HDLs to promote reverse cholesterol transport. HDLs were isolated from plasma of young (Y-HDL) and elderly (E-HDL) subjects. HDL-mediated cholesterol efflux was studied using THP-1 and J774 macrophages. Our results show that E-HDLs present a lower capacity to promote cholesterol efflux than Y-HDLs (41.7 ± 1.4% vs. 49.0 ± 2.2%, respectively; P = 0.013). Reduction in the HDL-mediated cholesterol efflux capacity with aging was more significant with HDL3 than HDL2 (Y-HDL3, 57.3 ± 1% vs. E-HDL3, 50.9 ± 2%; P = 0.012). Moreover, our results show that ABCA1-mediated cholesterol efflux is the more affected pathway in terms of cholesterol-removing capacity. Interestingly, the composition and structure of HDL revealed a reduction in the phosphatidylcholine-sphingomyelin ratio (E-HDL, 32.7 ± 2.7 vs. Y-HDL, 40.0 ± 1.9; P = 0.029) and in the phospholipidic layer membrane fluidity in E-HDL compared with Y-HDL as well as an alteration in the apolipoprotein A-I structure and charge. In conclusion, our results shown that E-HDLs present a reduced capacity to promote cholesterol efflux, principally through the ABCA1 pathway, and this may explain the increase of the incidence of cardiovascular diseases observed during aging.


Experimental Cell Research | 2008

Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells

Julie A. Chouinard; Guillaume Grenier; Abdelouahed Khalil; Patrick Vermette

There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidal force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Youngs moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.


American Journal of Physiology-cell Physiology | 2010

A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway

Frédéric Trensz; Sonia Haroun; Alexandre Cloutier; Martin V. Richter; Guillaume Grenier

Previous work has pointed to a role for the Wnt canonical pathway in fibrosis formation in aged skeletal muscles. In the present study, we studied the dystrophic mdx mouse, which displays skeletal muscle fibrosis. Our results indicated that the muscle resident stromal cell (mrSC) population in the muscles of dystrophic mice is higher than in the muscles of age-matched wild-type mice. Wnt3a promoted the proliferation of and collagen expression by cultured mrSCs but arrested the growth of and collagen expression by cultured myoblasts. Injections of Wnt3A in the tibialis anterior muscles of adult wild-type mice significantly enhanced the mrSC population and collagen deposition compared with the contralateral muscles. Conversely, an injection of the Wnt antagonist Dickkof protein (DKK1) into the skeletal muscles of mdx mice significantly reduced collagen deposition. These results suggested that the Wnt canonical pathway expands the population of mrSCs and stimulates their production of collagen as observed during aging and in various myopathies.


In Vitro Cellular & Developmental Biology – Animal | 2003

ISOLATION AND CULTURE OF THE THREE VASCULAR CELL TYPES FROM A SMALL VEIN BIOPSY SAMPLE

Guillaume Grenier; Murielle Rémy-Zolghadri; Rina Guignard; François Bergeron; Raymond Labbé; François A. Auger; Lucie Germain

SummaryThe availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient’s morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel. This study describes such a cell-harvesting procedure from vein biopsy samples of canine and human origin. For this purpose, we combined preexisting mechanical methods for the isolation of the three vascular cell types: EC by scraping of the endothelium using a scalpel blade, vascular smooth muscle cells (VSMC), and perivascular fibroblasts according to the explant method. Once in culture, cells rapidly grew with the high level of enrichment. The morphological, phenotypical, and functional expected criteria were maintained: EC formed cobblestone colonies, expressed the von Willebrand factor, and incorporated acetylated low-density lipoprotein (LDL); VSMC were elongated and contracted when challenged by vasoactive agents; perivascular fibroblasts formed a mechanically resistant structure. Thus, we demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample. Their functional characteristics indicated that they were suitable for the cellularization of synthetic prosthesis or the reconstruction of functional multicellular autologous organs by tissue engineering.


BMC Musculoskeletal Disorders | 2011

The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice

Annabelle Z. Caron; Sonia Haroun; Élisabeth Leblanc; Frédéric Trensz; Chantal Guindi; Aziz Amrani; Guillaume Grenier

BackgroundSkeletal muscle atrophy is a serious concern for the rehabilitation of patients afflicted by prolonged limb restriction. This debilitating condition is associated with a marked activation of NFκB activity. The ubiquitin-proteasome pathway degrades the NFκB inhibitor IκBα, enabling NFκB to translocate to the nucleus and bind to the target genes that promote muscle atrophy. Although several studies showed that proteasome inhibitors are efficient to reduce atrophy, no studies have demonstrated the ability of these inhibitors to preserve muscle function under catabolic condition.MethodsWe recently developed a new hindlimb immobilization procedure that induces significant skeletal muscle atrophy and used it to show that an inflammatory process characterized by the up-regulation of TNFα, a known activator of the canonical NFκB pathway, is associated with the atrophy. Here, we used this model to investigate the effect of in vivo proteasome inhibition on the muscle integrity by histological approach. TNFα, IL-1, IL-6, MuRF-1 and Atrogin/MAFbx mRNA level were determined by qPCR. Also, a functional measurement of locomotors activity was performed to determine if the treatment can shorten the rehabilitation period following immobilization.ResultsIn the present study, we showed that the proteasome inhibitor MG132 significantly inhibited IκBα degradation thus preventing NFκB activation in vitro. MG132 preserved muscle and myofiber cross-sectional area by downregulating the muscle-specific ubiquitin ligases atrogin-1/MAFbx and MuRF-1 mRNA in vivo. This effect resulted in a diminished rehabilitation period.ConclusionThese finding demonstrate that proteasome inhibitors show potential for the development of pharmacological therapies to prevent muscle atrophy and thus favor muscle rehabilitation.

Collaboration


Dive into the Guillaume Grenier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Balg

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge