Nathalie Faucheux
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Faucheux.
Cytokine & Growth Factor Reviews | 2009
Helena Senta; Park H; Eric Bergeron; Olivier Drevelle; D. Fong; Élisabeth Leblanc; François Cabana; Sophie Roux; Guillaume Grenier; Nathalie Faucheux
The bone morphogenetic proteins (BMPs) are cytokines of the transforming growth factor beta family. Some BMPs such as BMP-2 and BMP-7 play a major role in the development of the skeleton and the maintenance of homeostasis during bone remodelling. To date, only BMP-2 and BMP-7 have been approved by the Food and Drug Administration for specific orthopaedic applications. However, due to BMP cost, peptides derived from their knuckle epitope with osteogenic properties have been developed. BMPs are involved in many other biological events, including embryogenesis, angiogenesis and cancer. BMPs therefore have great biomedical potential as osteogenic factors and as anti-cancer agents. This review focuses on the use of BMPs and their derived peptides in biomedical delivery systems and gene therapy.
Drug Discovery Today | 2004
Valerie Olivier; Nathalie Faucheux; Pierre Hardouin
As life expectancy increases, so does the need to treat large bone defects. New biomaterials combined with osteogenic cells are now being developed as an alternative to autogenous bone grafts. The goal is to make the stem cells adhere to the scaffold, and then grow to differentiate into functional osteogenic cells and organize into healthy bone as the scaffold degrades. Decisive improvements have been made in the fields of stem cell biology, 3-D scaffold fabrication and tissue engineering, but the ideal bone substitute that fulfils all functional and safety requirements has yet to be developed.
Journal of Bone and Mineral Research | 2011
Élisabeth Leblanc; Frédéric Trensz; Sonia Haroun; Geneviève Drouin; Eric Bergeron; Christopher M Penton; Federica Montanaro; Sophie Roux; Nathalie Faucheux; Guillaume Grenier
Heterotopic ossification (HO) is defined as the formation of bone inside soft tissue. Symptoms include joint stiffness, swelling, and pain. Apart from the inherited form, the common traumatic form generally occurs at sites of injury in damaged muscles and is often associated with brain injury. We investigated bone morphogenetic protein 9 (BMP‐9), which possesses a strong osteoinductive capacity, for its involvement in muscle HO physiopathology. We found that BMP‐9 had an osteoinductive influence on mouse muscle resident stromal cells by increasing their alkaline phosphatase activity and bone‐specific marker expression. Interestingly, BMP‐9 induced HO only in damaged muscle, whereas BMP‐2 promoted HO in skeletal muscle regardless of its state. The addition of the soluble form of the ALK1 protein (the BMP‐9 receptor) significantly inhibited the osteoinductive potential of BMP‐9 in cells and HO in damaged muscles. BMP‐9 thus should be considered a candidate for involvement in HO physiopathology, with its activity depending on the skeletal muscle microenvironment.
Journal of Controlled Release | 2012
Marc-Antoine Lauzon; Eric Bergeron; Bernard Marcos; Nathalie Faucheux
More and more of our aging populations will suffer from large bone defects in the next few years. But the growth factor (GF) delivery systems (DSs) currently under investigation will help overcome the limitations of the bone grafts presently used. Some GFDSs accredited by the Food and Drug Administration (FDA) are commercially available, but they have mechanical, structural and GF retention weaknesses. New studies focus on polymers and the composition of GFs in order to mimic as closely as possible the physiological environment of healing bone. This review first summarizes the process of endochondral bone healing and the major cytokines involved. We then review the latest GFDSs, with their combinations of organic, inorganic, natural and synthetic biomaterials, the kinetics of GF release and their biological effects. We will explore new research avenues such as the use of peptides derived from bone morphogenetic proteins, including our own results, and the sequential release of bone-inducing GFs. We then review the latest mathematical models of drug delivery systems (DDSs) for several transport phenomena that may be encountered when using GFDS. The final section discusses new improvements for GFDS modeling.
Frontiers in Bioscience | 2009
Marquis Me; Lord E; Eric Bergeron; Olivier Drevelle; Park H; François Cabana; Helena Senta; Nathalie Faucheux
With the aging population, the incidence of bone defects due to fractures, tumors and infection will increase. Therefore, bone replacement will become an ever bigger and more costly problem. The current standard for bone replacement is autograft, because these transplants are osteoconductive and osteoinductive. However, harvesting an autograft requires additional surgery at the donor site that is related to high level of morbidity. In addition, the quantity of bone tissue that can be harvested is limited. These limitations have necessitated the pursuit of alternatives using biomaterials. The control of bone tissue cell adhesion to biomaterials is an important requirement for the successful incorporation of implants or the colonization of scaffolds for tissue repair. Controlling cells-biomaterials interactions appears of prime importance to influence subsequent biological processes such as cell proliferation and differentiation. Therefore, interactions of cells with biomaterials have been widely studied especially on two-dimensional systems. This review focuses on these interactions.
Biochemical and Biophysical Research Communications | 2010
Hyunjin Park; Eric Bergeron; Helena Senta; Kim Guillemette; Sabrina Beauvais; Richard Blouin; Joël Sirois; Nathalie Faucheux
The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma, a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 micromol/L sanguinarine for 4 and 24h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 micromol/L sanguinarine killed almost 100% of both cell populations within 24h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.
Cellular Signalling | 2013
David Fong; Martine Bisson; Gino Laberge; Stephen McManus; Guillaume Grenier; Nathalie Faucheux; Sophie Roux
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.
Bone | 2015
Jennifer Downey; Dominique Lauzier; Peter Kloen; Klaus Klarskov; Martin V. Richter; Reggie C. Hamdy; Nathalie Faucheux; Anthony Scimè; Frédéric Balg; Guillaume Grenier
Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle.
Biomaterials | 2010
Olivier Drevelle; Eric Bergeron; Helena Senta; Marc-Antoine Lauzon; Sophie Roux; Guillaume Grenier; Nathalie Faucheux
The efficiency of biomaterials used in bone repair depends greatly on their ability to interact with bone cells. Hence, we have functionalized polycaprolactone (PCL) films by peptides derived from the bone sialoprotein containing RGD sequence (pRGD), to increase their ability to interact with murine MC3T3-E1 preosteoblasts, and favour cell response to recombinant human bone morphogenetic protein-2 (rhBMP-2). RGE peptides (pRGE) were used as negative controls. The PCL films were hydrolyzed with NaOH and then carboxylic acid groups were activated to allow chemisorption of the peptides. Alkaline treatment increased the hydrophilicity of PCL films without significantly change their roughness. Peptide immobilization on PCL was checked by X-ray photoelectron spectroscopy. Hydrolyzed PCL films (Hydro PCL), which adsorbed fibronectin and vitronectin from serum after 1 h incubation, prevented the spreading of MC3T3-E1 preosteoblasts, while films bearing pRGD or pRGE did not. In contrast, MC3T3-E1 preosteoblasts attached to pRGD and incubated for 1 h in serum-free medium spread better than cells on Hydro PCL or pRGE. Only cells on pRGD had organized cytoskeleton, phosphorylated focal adhesion kinase on Y(397) and responded to rhBMP-2 by activating Smad pathway. Thus, pRGD PCL may be used to favour bone cell cytoskeletal organization and response to rhBMP-2.
Journal of Controlled Release | 2015
Marc-Antoine Lauzon; Alex Daviau; Bernard Marcos; Nathalie Faucheux
The number of people diagnosed with Alzheimers disease (AD) is increasing steadily as the world population ages, thus creating a huge socio-economic burden. Current treatments have only transient effects and concentrate on a single aspect of AD. There is much evidence suggesting that growth factors (GFs) have a great therapeutic potential and can play on all AD hallmarks. Because GFs are prone to denaturation and clearance, a delivery system is required to ensure protection and a sustainable delivery. This review provides information about the latest advances in the development of GF delivery systems (GFDS) targeting the brain in terms of in vitro and in vivo effects in the context of AD and discusses new strategies designed to increase the availability and the specificity of GFs to the brain. This paper also discusses, on a mechanistic level, the different delivery hurdles encountered by the carrier or the GF itself from its injection site up to the brain tissue. The major mass transport phenomena influencing the delivery systems targeting the brain are addressed and insights are given about how mechanistic mathematical frameworks can be developed to use and optimize them.