Guillaume Soubigou
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillaume Soubigou.
Nature | 2009
Alejandro Toledo-Arana; Olivier Dussurget; Georgios Nikitas; Nina Sesto; Hélène Guet-Revillet; Damien Balestrino; Edmund Loh; Jonas Gripenland; Teresa Tiensuu; Karolis Vaitkevicius; Mathieu Barthelemy; Massimo Vergassola; Marie-Anne Nahori; Guillaume Soubigou; Béatrice Regnault; Jean-Yves Coppée; Marc Lecuit; Pascale Cossart
The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5′ and 3′ untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.
Science | 2013
Haig A. Eskandarian; Francis Impens; Marie-Anne Nahori; Guillaume Soubigou; Jean-Yves Coppée; Pascale Cossart; Mélanie A. Hamon
Introduction Posttranslational modification of histones is a well-documented mechanism by which the chromatin structure is modulated to regulate gene expression. Increasing evidence is revealing the strong impact of bacterial pathogens on host chromatin. However, our knowledge of the mechanisms underlying pathogen-induced chromatin changes and the impact of histone modifications and chromatin modifiers on infection is still in its infancy. Mechanism and consequence of SIRT2 activation by L. monocytogenes. Listeria induces SIRT2 relocalization from cytoplasm to chromatin, where SIRT2 deacetylates H3K18. The consequences of this cascade are control of host transcription, as illustrated by representative genes regulated by SIRT2, and control of infection, as assessed by staining cells for the secreted bacterial factor InlC (red), which is overexpressed in the cytosol, and host actin, which is polymerized into comet tails by bacteria (green). Error bars indicate SEM; **P < 0.001. Ac, acetyl; deAc, deacetylase. Methods We used the model bacterium Listeria monocytogenes and analyzed the mechanisms underlying a specific histone modification, deacetylation of histone H3 on lysine 18 (H3K18). Through immunoblotting, mass spectrometry, and chromatin immunoprecipitation, we studied how infection affected this modification, both in vitro and in vivo. We used a combination of chemical inhibitors, small interfering RNA (siRNA), and knockout mice to discover the key role of the host histone deacetylase sirtuin 2 (SIRT2) and determine its effect on infection. We performed microarray analysis to identify how infection and SIRT2 modulated host transcription. Results L. monocytogenes induces deacetylation of H3K18. This modification is mediated by the host deacetylase SIRT2. Upon infection, SIRT2 translocates from the cytosol to the chromatin of the host at the transcription start sites of a subset of genes that are repressed. We find that this process is dependent on activation, by the bacterial protein InlB, of the cell surface receptor Met and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling. Finally, infecting cells in which SIRT2 activity was blocked (by pharmacological agents, treatment with siRNA, or the use of SIRT2–/– mice) resulted in a significant impairment of bacterial infection, showing that activity of SIRT2 is necessary for infection, both in vitro and in vivo. Discussion Our study identifies a stimulus, infection by L. monocytogenes, that leads to nuclear localization of SIRT2, a deacetylase previously shown to be mainly cytoplasmic. In fact, only upon infection and SIRT2 translocation from the cytoplasm to the chromatin does this deacetylase have a role in transcriptional repression. This mechanism of host subversion could be common to other invasive pathogens that induce deacetylation of histones, and it defines a target for potential therapeutic treatment. Bacterial Subversion Tactics Intracellular bacterial pathogens such as Listeria monocytogenes can change host cell transcription programs to promote infection. Eskandarian et al. (1238858) found that during infection, the Listeria effector protein InlB promoted the movement of a host protein deacetylase, SIRT2, from its normal location in the cytosol to the nucleus. In the nucleus, SIRT2 helped to repress a number of host cell genes by deacetylating one of their associated histones. In mice, reduced levels of SIRT2 impaired bacterial infection. The bacterial pathogen Listeria monocytogenes exploits histone modifications to reprogram its host. Pathogens dramatically affect host cell transcription programs for their own profit during infection, but in most cases, the underlying mechanisms remain elusive. We found that during infection with the bacterium Listeria monocytogenes, the host deacetylase sirtuin 2 (SIRT2) translocates to the nucleus, in a manner dependent on the bacterial factor InlB. SIRT2 associates with the transcription start site of a subset of genes repressed during infection and deacetylates histone H3 on lysine 18 (H3K18). Infecting cells in which SIRT2 activity was blocked or using SIRT2−/− mice resulted in a significant impairment of bacterial infection. Thus, SIRT2-mediated H3K18 deacetylation plays a critical role during infection, which reveals an epigenetic mechanism imposed by a pathogenic bacterium to reprogram its host.
PLOS Genetics | 2013
Steve P. Bernier; David Lebeaux; Alicia S. DeFrancesco; Amandine Valomon; Guillaume Soubigou; Jean-Yves Coppée; Jean-Marc Ghigo
High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Cristel Archambaud; Marie-Anne Nahori; Guillaume Soubigou; Christophe Bécavin; Laure Laval; Pierre Lechat; Tamara Smokvina; Philippe Langella; Marc Lecuit; Pascale Cossart
Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome.
PLOS Genetics | 2011
Emmanuelle Martini; Valérie Borde; Matthieu Legendre; Stéphane Audic; Béatrice Regnault; Guillaume Soubigou; Bernard Dujon; Bertrand Llorente
Meiotic DNA double-strand breaks (DSBs) initiate crossover (CO) recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs). Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR) protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs). First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR–proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans–hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs) during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.
Cell | 2015
Sedigheh Delmaghani; Jean Defourny; Asadollah Aghaie; Maryline Beurg; Didier Dulon; Nicolas Thelen; Isabelle Perfettini; Tibor Zelles; Máté Aller; Anaïs Meyer; Alice Emptoz; Fabrice Giraudet; Michel Leibovici; Sylvie Dartevelle; Guillaume Soubigou; Marc Thiry; E. Sylvester Vizi; Saaid Safieddine; Jean Pierre Hardelin; P. Avan; Christine Petit
A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.
Mbio | 2013
Cristel Archambaud; Odile Sismeiro; Joern Toedling; Guillaume Soubigou; Christophe Bécavin; Pierre Lechat; Alice Lebreton; Constance Ciaudo; Pascale Cossart
ABSTRACT The intestinal tract is the largest reservoir of microbes in the human body. The intestinal microbiota is thought to be able to modulate alterations of the gut induced by enteropathogens, thereby maintaining homeostasis. Listeria monocytogenes is the agent of listeriosis, an infection transmitted to humans upon ingestion of contaminated food. Crossing of the intestinal barrier is a critical step of the infection before dissemination into deeper organs. Here, we investigated the role of the intestinal microbiota in the regulation of host protein-coding genes and microRNA (miRNA or miR) expression during Listeria infection. We first established the intestinal miRNA signatures corresponding to the 10 most highly expressed miRNAs in the murine ileum of conventional and germfree mice, noninfected and infected with Listeria. Next, we identified 6 miRNAs whose expression decreased upon Listeria infection in conventional mice. Strikingly, five of these miRNA expression variations (in miR-143, miR-148a, miR-200b, miR-200c, and miR-378) were dependent on the presence of the microbiota. In addition, as is already known, protein-coding genes were highly affected by infection in both conventional and germfree mice. By crossing bioinformatically the predicted targets of the miRNAs to our whole-genome transcriptomic data, we revealed an miRNA-mRNA network that suggested miRNA-mediated global regulation during intestinal infection. Other recent studies have revealed an miRNA response to either bacterial pathogens or commensal bacteria. In contrast, our work provides an unprecedented insight into the impact of the intestinal microbiota on host transcriptional reprogramming during infection by a human pathogen. IMPORTANCE While the crucial role of miRNAs in regulating the host response to bacterial infection is increasingly recognized, the involvement of the intestinal microbiota in the regulation of miRNA expression has not been explored in detail. Here, we investigated the impact of the intestinal microbiota on the regulation of protein-coding genes and miRNA expression in a host infected by L. monocytogenes, a food-borne pathogen. We show that the microbiota interferes with the microRNA response upon oral Listeria infection and identify several protein-coding target genes whose expression correlates inversely with that of the miRNA. Further investigations of the regulatory networks involving miR-143, miR-148a, miR-200b, miR-200c, and miR-378 will provide new insights into the impact of the intestinal microbiota on the host upon bacterial infection. While the crucial role of miRNAs in regulating the host response to bacterial infection is increasingly recognized, the involvement of the intestinal microbiota in the regulation of miRNA expression has not been explored in detail. Here, we investigated the impact of the intestinal microbiota on the regulation of protein-coding genes and miRNA expression in a host infected by L. monocytogenes, a food-borne pathogen. We show that the microbiota interferes with the microRNA response upon oral Listeria infection and identify several protein-coding target genes whose expression correlates inversely with that of the miRNA. Further investigations of the regulatory networks involving miR-143, miR-148a, miR-200b, miR-200c, and miR-378 will provide new insights into the impact of the intestinal microbiota on the host upon bacterial infection.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Anna Maciejewski-Duval; Cyril Bouche; Brigitte Delhomme; Françoise Hervé; Fabrice Daubigney; Guillaume Soubigou; Masatake Araki; Kimi Araki; Ken Ichi Yamamura; Philippe Djian
Basonuclin 2 is a recently discovered zinc finger protein of unknown function. Its paralog, basonuclin 1, is associated with the ability of keratinocytes to multiply. The basonuclin zinc fingers are closely related to those of the Drosophila proteins disco and discorelated, but the relation between disco proteins and basonuclins has remained elusive because the function of the disco proteins in larval head development seems to have no relation to that of basonuclin 1 and because the amino acid sequence of disco, apart from the zinc fingers, also has no similarity to that of the basonuclins. We have generated mice lacking basonuclin 2. These mice die within 24 h of birth with a cleft palate and abnormalities of craniofacial bones and tongue. In the embryonic head, expression of the basonuclin 2 gene is restricted to mesenchymal cells in the palate, at the periphery of the tongue, and in the mesenchymal sheaths that surround the brain and the osteocartilagineous structures. In late embryos, the rate of multiplication of these mesenchymal cells is greatly diminished. Therefore, basonuclin 2 is essential for the multiplication of craniofacial mesenchymal cells during embryogenesis. Non-Drosophila insect databases available since 2008 reveal that the basonuclins and the disco proteins share much more extensive sequence and gene structure similarity than noted when only Drosophila sequences were examined. We conclude that basonuclin 2 is both structurally and functionally the vertebrate ortholog of the disco proteins. We also note the possibility that some human craniofacial abnormalities are due to a lack of basonuclin 2.
PLOS ONE | 2012
Jacqueline Vieira; Alex R. Jones; Antoine Danon; Michiyo Sakuma; Nathalie Hoang; David Robles; Shirley Tait; Derren J. Heyes; Marie Picot; Taishi Yoshii; Charlotte Helfrich-Förster; Guillaume Soubigou; Jean Yves Coppée; André Klarsfeld; François Rouyer; Nigel S. Scrutton; Margaret Ahmad
Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.
Cellular Microbiology | 2011
Daniela M. Faust; Jacques Marquay Markiewicz; Anne Danckaert; Guillaume Soubigou; Nancy Guillén
Invasive infection with Entamoeba histolytica causes intestinal and hepatic amoebiasis. In liver, parasites cross the endothelial barrier before abscess formation in the parenchyma. We focussed on amoebae interactions with human hepatic endothelial cells, the latter potentially playing a dual role in the infection process: as a barrier and as modulators of host defence responses. We characterized early responses of a human liver sinusoidal endothelial cell line to virulent and virulence‐attenuated E. histolytica. Within the first minutes human cells start to retract, enter into apoptosis and die. In the presence of virulent amoebae, expression of genes related to cell cycle, cell death and integrin‐mediated adhesion signalling was modulated, and actin fibre, focal adhesion kinase and paxillin localizations changed. Effects of inhibitors and amoeba strains not expressing pathogenic factors amoebapore A and cysteine protease A5 indicated that cell death and cytoskeleton disorganization depend upon parasite adhesion and amoebic cysteine proteinase activities. The data establish a relation between cytotoxic effects of E. histolytica and altered human target cell adhesion and suggest that interference with adhesion signalling triggers endothelial cell retraction and death. Understanding the roles of integrin signalling in endothelial cells will provide clues to unravel host–pathogen interactions during amoebic liver infection.