Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo E. Ponce-Campos is active.

Publication


Featured researches published by Guillermo E. Ponce-Campos.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.

Luis Guanter; Yongguang Zhang; Martin Jung; Joanna Joiner; Maximillian Voigt; Joseph A. Berry; Christian Frankenberg; Alfredo R. Huete; Pablo J. Zarco-Tejada; Jung-Eun Lee; M. Susan Moran; Guillermo E. Ponce-Campos; Christian Beer; Gustavo Camps-Valls; Nina Buchmann; Damiano Gianelle; Katja Klumpp; Alessandro Cescatti; John M. Baker; Timothy J. Griffis

Significance Global food and biofuel production and their vulnerability in a changing climate are of paramount societal importance. However, current global model predictions of crop photosynthesis are highly uncertain. Here we demonstrate that new space-based observations of chlorophyll fluorescence, an emission intrinsically linked to plant biochemistry, enable an accurate, global, and time-resolved measurement of crop photosynthesis, which is not possible from any other remote vegetation measurement. Our results show that chlorophyll fluorescence data can be used as a unique benchmark to improve our global models, thus providing more reliable projections of agricultural productivity and climate impact on crop yields. The enormous increase of the observational capabilities for fluorescence in the very near future strengthens the relevance of this study. Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.


Ecology | 2014

Functional response of U.S. grasslands to the early 21st-century drought

M. Susan Moran; Guillermo E. Ponce-Campos; Alfredo R. Huete; Mitchel P. McClaran; Yongguang Zhang; Erik P. Hamerlynck; David J. Augustine; Stacey A. Gunter; Stanley G. Kitchen; Debra P. C. Peters; Patrick J. Starks; Mariano Hernandez

Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (P(T)), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year P(T) and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services.


Journal of Experimental Botany | 2016

Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

M. Pilar Cendrero-Mateo; M. Susan Moran; Shirley A. Papuga; Kelly R. Thorp; Luis Alonso; Joaquín Moreno; Guillermo E. Ponce-Campos; Uwe Rascher; G. Wang

Highlight We studied for the first time the temporal and spatial limits within which active and passive chlorophyll fluorescence measurements are comparable.


Scientific Reports | 2016

Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia

Xuanlong Ma; Alfredo R. Huete; James Cleverly; Derek Eamus; F. Chevallier; Joanna Joiner; Benjamin Poulter; Yongguang Zhang; Luis Guanter; Wayne S. Meyer; Zunyi Xie; Guillermo E. Ponce-Campos

Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010–11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010–11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010–11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011–12, and was nearly eliminated in 2012–13 (0.08 Pg). We further report evidence of an earlier 2000–01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.


Science of The Total Environment | 2017

Country-level net primary production distribution and response to drought and land cover change.

Dailiang Peng; Bing Zhang; Chaoyang Wu; Alfredo R. Huete; Alemu Gonsamo; Liping Lei; Guillermo E. Ponce-Campos; Xinjie Liu; Yanhong Wu

Carbon sequestration by terrestrial ecosystems can offset emissions and thereby offers an alternative way of achieving the target of reducing the concentration of CO2 in the atmosphere. Net primary production (NPP) is the first step in the sequestration of carbon by terrestrial ecosystems. This study quantifies moderate-resolution imaging spectroradiometer (MODIS) NPP from 2000 to 2014 at the country level along with its response to drought and land cover change. Our results indicate that the combined NPP for 53 countries represents >90% of global NPP. From 2000 to 2014, 29 of these 53 countries had increasing NPP trends, most notably the Central African Republic (23gC/m2/y). The top three and top 12 countries accounted for 30% and 60% of total global NPP, respectively, whereas the mean national NPP per unit area in the countries with the 12 lowest values was only around ~300gC/m2/y - the exception to this was Brazil, which had an NPP of 850gC/m2/y. Large areas of Russia, Argentina, Peru and several countries in southeast Asia showed a marked decrease in NPP (~15gC/m2/y). About 37% of the NPP decrease was caused by drought while ~55% of NPP variability was attributed to changes in water availability. Land cover change explained about 20% of the NPP variability. Our findings support the idea that government policies should aim primarily to improve water management in drought-afflicted countries; land use/land cover change policy could also be used as an alternative method of increasing NPP.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production

Luis Guanter; Yongguang Zhang; Martin Jung; Joanna Joiner; Maximilian Voigt; Joseph A. Berry; Christian Frankenberg; Alfredo R. Huete; Pablo J. Zarco-Tejada; Jung-Eun Lee; M. Susan Moran; Guillermo E. Ponce-Campos; Christian Beer; Gustavo Camps-Valls; Nina Buchmann; Damiano Gianelle; Katja Klumpp; Alessandro Cescatti; John M. Baker; Timothy J. Griffis

The derivation of the first global maps of sun-induced chlorophyll fluorescence (SIF) from Greenhouse Gases Observing Satellite (GOSAT) data in 2011 (1, 2), and later from Global Ozone Monitoring Experiment-2 (GOME-2) (3), was perceived as a milestone in the fields of vegetation remote sensing and carbon modeling. As stated by Magnani et al. (4), space-borne SIF measurements are intrinsically related to photosynthetic activity and therefore have the potential to trigger a new era in the monitoring of vegetation functioning. In fact, the first results from the analysis of the GOSAT and GOME-2 global SIF datasets are confirming the expected link between SIF and the gross primary productivity (GPP) of terrestrial ecosystems (e.g., ref. 2). In particular, our specific study on the potential of SIF observations to monitor crop photosynthesis (5) empirically demonstrates a strong linear relationship between SIF and GPP for croplands and grasslands at 0.5° and monthly scales.


Journal of Hydrometeorology | 2015

Impact of Varying Storm Intensity and Consecutive Dry Days on Grassland Soil Moisture

John D. Hottenstein; Guillermo E. Ponce-Campos; Julio Moguel-Yanes; M. Susan Moran

Intra-annual precipitation patterns are expected to shift toward more intense storms and longer dry periods because of changes in climate within future decades. Using satellite-derived estimates of plant growth combined with in situ measurements of precipitation and soil moisture between 1999 and 2013, this study quantifiedthe relationship between intra-annual precipitation patterns, annual average soil moisture (at 5-cm depth), and plant growth at nine grassland sites across the southern United States. Results showed a fundamental difference in the response to varying precipitation patterns between mesic and semiarid grasslands. Surface soil moisture in mesic grasslands decreased with an increase of high-intensity storms, whereas in semiarid grasslands, soil moisture decreased with longer dry periods. For these sites, annual average soil moisture was a better indicator of grassland production than total annual precipitation. This improved ability to predict variability in soil moisture and plant growth with changing hydroclimatic conditions will result in more efficient resource management and better-informed policy decisions.


Journal of Applied Remote Sensing | 2015

Development of an integrated multiplatform approach for assessing brush management conservation efforts in semiarid rangelands

Chandra D. Holifield Collins; Mark A. Kautz; Ronald Tiller; Sapana Lohani; Guillermo E. Ponce-Campos; John D. Hottenstein; Loretta J. Metz

Millions of dollars have been spent on brush management, or removal of unwanted woody vegetation, as a conservation practice to control the presence of woody species. Land managers need an inexpensive means of monitoring the effects of brush management conser- vation methods for decreasing degradation in rangeland systems. In this study, free, publically available, high-resolution (1 m) imagery from the National Agricultural Imagery Program (NAIP) and moderate-resolution (30 m) Landsat-5 Thematic Mapper (TM) imagery were com- bined to produce a large-scale technique for mapping woody cover. High-resolution imagery- based estimates of woody cover were found to be reasonable (RMSE ¼ 3.8%, MAE ¼ 2.9%) surrogates for ground-based woody cover. An equation for TM-derived woody cover was developed. TM scenes of woody cover (TMWC) were produced and validated using NAIP and ground-based data. Results showed that the developed relation produced viable (RMSE ¼ 8.5%, MAE ¼ 6.4%) maps of woody cover that could be used to successfully track the occurrence of brush removal, as well as monitor the presence or lack of subsequent reemergence. This work provides land managers with an operational means of determining where to allocate resources to implement brush management, as well as a cost-effective method of monitoring the effects of their efforts.


Remote Sensing | 2013

Response of Spectral Reflectances and Vegetation Indices on Varying Juniper Cone Densities

Dailiang Peng; Zhangyan Jiang; Alfredo R. Huete; Guillermo E. Ponce-Campos; Uyen Nguyen; Jeffrey C. Luvall

Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen-discharging male juniper cones within a juniper canopy. This was done through a controlled outdoor experiment involving ASD FieldSpec Pro Spectroradiometer measurements over juniper canopies of varying cone densities. Broadband and narrowband spectral reflectance and vegetation index (VI) patterns were evaluated as to their sensitivity and their ability to discriminate the presence of cones. The overall aim of this research was to assess remotely sensed phenological capabilities to detect pollen-bearing juniper trees for public health applications. A general decrease in reflectance values with increasing juniper cone density was found, particularly in the Green (545–565 nm) and NIR (750–1,350 nm) regions. In contrast, reflectances in the shortwave-infrared (SWIR, 2,000 nm to 2,350 nm) region decreased from no cone presence to intermediate amounts (90 g/m2) and then increased from intermediate levels to the highest cone densities (200 g/m2). Reflectance patterns in the Red (620–700 nm) were more complex due to shifting contrast patterns in absorptance between cones and juniper foliage, where juniper foliage is more absorbing than cones only within the intense narrowband region of maximum chlorophyll absorption near 680 nm. Overall, narrowband reflectances were more sensitive to cone density changes than the equivalent MODIS broadbands. In all VIs analyzed, there were significant relationships with cone density levels, particularly with the narrowband versions and the two-band vegetation index (TBVI) based on Green and Red bands, a promising outcome for the use of phenocams in juniper phenology trait studies. These results indicate that spectral indices are sensitive to certain juniper phenologic traits that can potentially be used for juniper cone detection in support of public health applications.


Remote Sensing | 2018

Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images

Xin Zhang; Bingfang Wu; Guillermo E. Ponce-Campos; Miao Zhang; Sheng Chang; Fuyou Tian

Rice is a staple food in East Asia and Southeast Asia—an area that accounts for more than half of the world’s population, and 11% of its cultivated land. Studies on rice monitoring can provide direct or indirect information on food security, and water source management. Remote sensing has proven to be the most effective method for the large-scale monitoring of croplands, by using temporary and spectral information. The Google Earth Engine (GEE) is a cloud-based platform providing access to high-performance computing resources for processing extremely large geospatial datasets. In this study, by leveraging the computational power of GEE and a large pool of satellite and other geophysical data (e.g., forest and water extent maps, with high accuracy at 30 m), we generated the first up-to-date rice extent map with crop intensity, at 10 m resolution in the three provinces with the highest rice production in China (the Heilongjiang, Hunan and Guangxi provinces). Optical and synthetic aperture radar (SAR) data were monthly and metric composited to ensure a sufficient amount of up-to-date data without cloud interference. To remove the common confounding noise in the pixel-based classification results at medium to high resolution, we integrated the pixel-based classification (using a random forest classifier) result with the object-based segmentation (using a simple linear iterative clustering (SLIC) method). This integration resulted in the rice planted area data that most closely resembled official statistics. The overall accuracy was approximately 90%, which was validated by ground crop field points. The F scores reached 87.78% in the Heilongjiang Province for monocropped rice, 89.97% and 80.00% in the Hunan Province for monoand double-cropped rice, respectively, and 88.24% in the Guangxi Province for double-cropped rice.

Collaboration


Dive into the Guillermo E. Ponce-Campos's collaboration.

Top Co-Authors

Avatar

M. Susan Moran

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Joanna Joiner

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Russell L. Scott

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Luis Guanter

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Christian Frankenberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Berry

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge