Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo Esteban-Pretel is active.

Publication


Featured researches published by Guillermo Esteban-Pretel.


Toxicological Sciences | 2010

Chronic Ethanol Exposure Alters the Levels, Assembly, and Cellular Organization of the Actin Cytoskeleton and Microtubules in Hippocampal Neurons in Primary Culture

Ana María Romero; Guillermo Esteban-Pretel; María Pilar Marín; Xavier Ponsoda; Raúl Ballestín; Juan J. Canales; Jaime Renau-Piqueras

The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effects by morphological and biochemical methods. In the experiments described below, we provide the first evidence that chronic alcohol exposure decreases the amount of both filamentous actin and polymerized tubulin in neurons and that the number of MTs in dendrites lowers in treated cells. Alcohol also diminishes the MT-associated protein-2 levels, which mainly localizes in the somatodendritic compartment in neurons. Ethanol decreases the levels of total Rac, Cdc42, and RhoA, three small guanosine triphosphatases (GTPases) involved in the organization and dynamics of the actin cytoskeleton and MTs. Yet when alcohol decreases the levels of the active forms (GTP bound) of Rac1 and Cdc42, it does not affect the active form of RhoA. We also investigated the levels of several effector and regulator molecules of these GTPases to find that alcohol induces heterogeneous results. In conclusion, our results show that MT, actin cytoskeleton organization, and Rho GTPase signaling pathways are targets for the toxic effects of ethanol in neurons.


Toxicological Sciences | 2010

Endocytosis in Cultured Neurons Is Altered by Chronic Alcohol Exposure

María Pilar Marín; Guillermo Esteban-Pretel; Xavier Ponsoda; Ana María Romero; Raúl Ballestín; Carlos López; Luis Megías; Joaquín Timoneda; A. Molowny; Juan J. Canales; Jaime Renau-Piqueras

Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However, information on the effect of chronic alcohol exposure on this process in neurons is scarce. As an approach, we investigated the effect of alcohol exposure on the internalization of two widely used endocytic markers, albumin and transferrin, in developing hippocampal neurons in primary culture. The effect of this treatment on the levels of several representative proteins involved in the endocytic process was also analyzed. Some of these proteins are also involved in the organization of the actin cytoskeleton. Pretreatment of cells with inhibitors chlorpromazine or nystatin indicates that albumin is internalized mainly by caveolin-dependent endocytosis. On the other hand, alcohol decreases the endocytosis of both markers, although no qualitative changes in the distribution of either of these molecules were observed. Finally, the effect of ethanol on the proteins analyzed was heterogeneous. Alcohol decreases the levels of clathrin, AP-2, SNX9, Rab5, Rab11, EEA1, Cdc42, or RhoA but increases the amount of Arf6. Moreover, alcohol does not affect the levels of caveolin1, dynamin1, Rab7, and LAMP2. This toxic effect of alcohol on endocytosis could affect some of the important neuronal activities, which depend on this process, including cell signaling. Our results in neurons also stress the notion that one of the main targets of ethanol is intracellular transport.


Histochemistry and Cell Biology | 2012

Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport

Mónica Tomás; María Pilar Marín; Emma Martínez-Alonso; Guillermo Esteban-Pretel; Alberto Diaz-Ruiz; Rafael Vázquez-Martínez; María M. Malagón; Jaime Renau-Piqueras; José A. Martínez-Menárguez

In the present study, we analyze the effects of ethanol on the Golgi structure and membrane transport in differentiated PC12 cells, which are used as a model of neurons. Chronic exposure to moderate doses of ethanol induces Golgi fragmentation, a common characteristic of many neurodegenerative diseases. Alcohol impaired the lateral linking of stacks without causing microtubule damage. Extensive immunocytochemical and western blot analyses of representative Golgi proteins showed that few, but important, proteins are significantly affected. Thus, alcohol exposure induced a significant ER-to-Golgi transport delay, the retention of the GTPase Rab1 in the Golgi membranes and the accumulation of tethering factor p115 in the cytosol. These modifications would explain the observed fragmentation. The amount of p115 and the stacking protein GRASP65 increased in alcohol-treated cells, which might be a mechanism to reverse Golgi damage. Importantly, the overexpression of GTP-tagged Rab1 but not of a dominant-negative Rab1 mutant, restored the Golgi morphology, suggesting that this protein is the main target of alcohol. Taken together, our results support the view that alcohol and neurodegenerative diseases such as Parkinson have similar effects on intracellular trafficking and provide new clues on the neuropathology of alcoholism.


Journal of Nutrition | 2010

Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

Guillermo Esteban-Pretel; M. Pilar Marín; Francisco Cabezuelo; Verónica Moreno; Jaime Renau-Piqueras; Joaquín Timoneda; Teresa Barber

Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.


Journal of Neurochemistry | 2008

Chronic ethanol exposure induces alterations in the nucleocytoplasmic transport in growing astrocytes

María Pilar Marín; Mónica Tomás; Guillermo Esteban-Pretel; Luis Megías; Gustavo Egea; Jaime Renau-Piqueras

Nucleocytoplasmic transport is a crucial process for cell function. We assessed the general effect of chronic alcohol exposure on this transport in growing astrocytes for the first time. Import and export of proteins to the nucleus were examined by pulse‐chase experiments using 3H‐methionine, and we showed that ethanol induces a delay in both processes. Furthermore, we took an approach to evaluate the mechanisms involved in this effect. Whereas alcohol did not affect the amount and the distribution of several representative proteins that participate in nuclear import, such as RanBP1, RanGAP1 and the importins α2 and β3, it decreased the amount of Exp1/CRM1, which is a general export receptor involved in the nuclear export. In addition, the density and distribution of nuclear pore complexes, which contribute to nucleocytoplasmic transport, were also affected by ethanol. These effects can be related with changes found in the content of several proteins associated with the nuclear envelope and the nuclear pore complex structure such as lamins A/C, and nucleoporins p62 and RanBP2, respectively. These results suggest that ethanol could interfere with some of the important processes regulated by nucleocytoplasmic transport in astrocytes and support the idea that one of the main ethanol targets is intracellular transport.


Nutrients | 2014

Vitamin A Deficiency and Alterations in the Extracellular Matrix

Teresa Barber; Guillermo Esteban-Pretel; María Pilar Marín; Joaquín Timoneda

Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.


Journal of Nutritional Biochemistry | 2010

Vitamin A deficiency alters rat lung alveolar basement membrane Reversibility by retinoic acid

Guillermo Esteban-Pretel; M. Pilar Marín; Jaime Renau-Piqueras; Teresa Barber; Joaquín Timoneda

Vitamin A is essential for lung development and pulmonary cell differentiation and its deficiency results in alterations of lung structure and function. Basement membranes (BMs) are also involved in those processes, and retinoic acid, the main biologically active form of vitamin A, influences the expression of extracellular matrix macromolecules. Therefore, we have analyzed the ultrastructure and collagen content of lung alveolar BM in growing rats deficient in vitamin A and the recovering effect of all-trans retinoic acid. Male weanling pups were fed a retinol-adequate or -deficient diet until they were 60 days old. A group of vitamin A-deficient pups were recovered by daily intraperitoneal injections of all-trans retinoic acid for 10 days. Alveolar BM in vitamin A-deficient rats doubled its thickness and contained irregularly scattered collagen fibrils. Immunocytochemistry revealed that these fibrils were composed of collagen I. Total content of both collagen I protein and its mRNA was greater in vitamin-deficient lungs. In agreement with the greater size of the BM the amount of collagen IV was also increased. Proinflammatory cytokines, IL-1alpha, IL-1beta and TNF-alpha, did not change, but myeloperoxidase and TGF-beta1 were increased. Treatment of vitamin A-deficient rats with retinoic acid reversed all the alterations, but the BM thickness recovered only partially. Retinoic acid recovering activity occurred in the presence of increasing oxidative stress. In conclusion, vitamin A deficiency results in alterations of the structure and composition of the alveolar BM which are probably mediated by TGF-beta1 and reverted by retinoic acid. These alterations could contribute to the impairment of lung function and predispose to pulmonary disease.


Journal of Nutritional Biochemistry | 2013

Vitamin A deficiency disturbs collagen IV and laminin composition and decreases matrix metalloproteinase concentrations in rat lung. Partial reversibility by retinoic acid

Guillermo Esteban-Pretel; M. Pilar Marín; Jaime Renau-Piqueras; Yoshikazu Sado; Teresa Barber; Joaquín Timoneda

Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet until 60 days old. A subgroup of vitamin-A-deficient pups received daily intraperitoneal all-trans-retinoic acid injections for 10 days. Collagen IV and laminin chain composition were modified in vitamin-A-deficient rats. The protein and mRNA contents of chains α1(IV), α3(IV) and α4(IV) increased; those of chains α2(IV) and α5(IV) remained unchanged; and the protein and mRNA contents of laminin chains α5, β1 and γ1 decreased. The mRNA of laminin chains α2 and α4 also decreased. Matrix metalloproteinases 2 and 9 decreased, but the tissue inhibitors of metalloproteinases 1 and 2 did not change. Treating vitamin-A-deficient rats with retinoic acid reversed all alterations, but laminin chains α2, α4 and α5 and matrix metalloproteinase 2 remained low. In conclusion, vitamin A deficiency alters the subunit composition of collagen IV and laminin and the lungs proteolytic potential, which are partly reverted by retinoic acid. These alterations could contribute to impaired lung function and predispose to pulmonary disease.


Pharmaceuticals | 2011

Protein Traffic Is an Intracellular Target in Alcohol Toxicity

Guillermo Esteban-Pretel; María Pilar Marín; Ana María Romero; Xavier Ponsoda; Raúl Ballestín; Juan J. Canales; Jaime Renau-Piqueras

Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.


Alcohol and Alcoholism | 2013

Polyphosphoinositide Metabolism and Golgi Complex Morphology in Hippocampal Neurons in Primary Culture is Altered by Chronic Ethanol Exposure

Guillermo Esteban-Pretel; María Pilar Marín; Ana María Romero; Joaquín Timoneda; Xavier Ponsoda; Raúl Ballestín; Jaime Renau-Piqueras

AIMS Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.

Collaboration


Dive into the Guillermo Esteban-Pretel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Renau-Piqueras

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Molowny

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge