Joaquín Timoneda
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joaquín Timoneda.
Microbiology | 2001
Ruth Alonso; Inés Llopis; Consuelo Flores; Amelia Murgui; Joaquín Timoneda
Adherence of the opportunistic pathogen Candida albicans to basement membrane (BM) proteins is considered a crucial step in the development of candidiasis. In this study the interactions of C. albicans yeast cells with the three main domains of type IV collagen, a major BM glycoprotein, were analysed. C. albicans adhered to the three immobilized domains by different mechanisms. Adhesion to the N-terminal cross-linking domain (7S) required the presence of divalent cations, whereas interaction with the central collagenous domain (CC) was cation-independent. Recognition of the C-terminal non-collagenous domain (NC1) was partially cation-dependent. Binding inhibition assays with the corresponding domains in soluble form showed that these interactions were specific. Both Ca(2+) and Mg(2+) promoted adhesion to the 7S domain and the interaction was completely abolished by EDTA. Treatment of the 7S domain, or its subunits, with N-glycosidase F reduced yeast binding by approximately 70%. Moreover, several sugars known to be part of the N-linked oligosaccharide chains of collagen IV inhibited adhesion to immobilized 7S; N-acetylglucosamine, L-fucose and methylmannoside caused a similar inhibition whereas N-acetyllactosamine was a more effective inhibitor. In contrast, glucose, galactose, lactose or heparan sulfate did not affect yeast binding. Combinations of the inhibitory sugars at suboptimal inhibition concentrations did not reduce C. albicans adhesion more than the individual sugars, pointing to a single lectin as responsible for the interaction. These results taken together show that C. albicans utilizes several adhesins for interacting with type IV collagen, and that at least one of them is a lectin which recognizes the 7S(IV) oligosaccharide residues as its receptor.
Toxicological Sciences | 2010
María Pilar Marín; Guillermo Esteban-Pretel; Xavier Ponsoda; Ana María Romero; Raúl Ballestín; Carlos López; Luis Megías; Joaquín Timoneda; A. Molowny; Juan J. Canales; Jaime Renau-Piqueras
Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However, information on the effect of chronic alcohol exposure on this process in neurons is scarce. As an approach, we investigated the effect of alcohol exposure on the internalization of two widely used endocytic markers, albumin and transferrin, in developing hippocampal neurons in primary culture. The effect of this treatment on the levels of several representative proteins involved in the endocytic process was also analyzed. Some of these proteins are also involved in the organization of the actin cytoskeleton. Pretreatment of cells with inhibitors chlorpromazine or nystatin indicates that albumin is internalized mainly by caveolin-dependent endocytosis. On the other hand, alcohol decreases the endocytosis of both markers, although no qualitative changes in the distribution of either of these molecules were observed. Finally, the effect of ethanol on the proteins analyzed was heterogeneous. Alcohol decreases the levels of clathrin, AP-2, SNX9, Rab5, Rab11, EEA1, Cdc42, or RhoA but increases the amount of Arf6. Moreover, alcohol does not affect the levels of caveolin1, dynamin1, Rab7, and LAMP2. This toxic effect of alcohol on endocytosis could affect some of the important neuronal activities, which depend on this process, including cell signaling. Our results in neurons also stress the notion that one of the main targets of ethanol is intracellular transport.
Journal of Nutrition | 2010
Guillermo Esteban-Pretel; M. Pilar Marín; Francisco Cabezuelo; Verónica Moreno; Jaime Renau-Piqueras; Joaquín Timoneda; Teresa Barber
Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.
British Journal of Nutrition | 2000
Ernesto Estornell; José R. Tormo; Pilar Marín; Jaime Renau-Piqueras; Joaquín Timoneda; Teresa Barber
The aim of this study was to investigate comparative effects of vitamin A deficiency on respiratory activity and structural integrity in liver and heart mitochondria. Male rats were fed a liquid control diet (control rats) or a liquid vitamin A-deficient diet (vitamin A-deficient rats) for 50 days. One group of vitamin-A deficient rats was refed a control diet for 15 days (vitamin A-recovered rats). To assess the respiratory function of mitochondria the contents of coenzyme Q (ubiquinone, CoQ), cytochrome c and the activities of the whole electron transport chain and of each of its respiratory complexes were evaluated. Chronic vitamin A deficiency promoted a significant increase in the endogenous coenzyme Q content in liver and heart mitochondria when compared with control values. Vitamin A deficiency induced a decrease in the activity of complex I (NADH-CoQ reductase) and complex II (succinate-CoQ reductase) and in the levels of complex I and cytochrome c in heart mitochondria. However, NADH and succinate oxidation rates were maintained at the control levels due to an increase in the CoQ content in accordance with the kinetic behaviour of CoQ as an homogeneous pool. On the contrary, the high CoQ content did not affect the electron-transfer rate in liver mitochondria, whose integrity was preserved from the deleterious effects of the vitamin A deficiency. Ultrastructural assessment of liver and heart showed that vitamin A deficiency did not induce appreciable alterations in the morphology of their mitochondria. After refeeding the control diet, serum retinol, liver and heart CoQ content and the activity of complex I and complex II in heart mitochondria returned to normality. However, the activities of both whole electron transfer chain and complex I in liver were increased over the control values. The interrelationships between physiological antioxidants in biological membranes and the beneficial effects of their administration in mitochondrial diseases are discussed.
Archives of Biochemistry and Biophysics | 1990
M. DegliEsposti; F. Ballester; Joaquín Timoneda; Massimo Crimi; Giorgio Lenaz
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration.
Nutrients | 2014
Teresa Barber; Guillermo Esteban-Pretel; María Pilar Marín; Joaquín Timoneda
Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.
Journal of Nutritional Biochemistry | 2010
Guillermo Esteban-Pretel; M. Pilar Marín; Jaime Renau-Piqueras; Teresa Barber; Joaquín Timoneda
Vitamin A is essential for lung development and pulmonary cell differentiation and its deficiency results in alterations of lung structure and function. Basement membranes (BMs) are also involved in those processes, and retinoic acid, the main biologically active form of vitamin A, influences the expression of extracellular matrix macromolecules. Therefore, we have analyzed the ultrastructure and collagen content of lung alveolar BM in growing rats deficient in vitamin A and the recovering effect of all-trans retinoic acid. Male weanling pups were fed a retinol-adequate or -deficient diet until they were 60 days old. A group of vitamin A-deficient pups were recovered by daily intraperitoneal injections of all-trans retinoic acid for 10 days. Alveolar BM in vitamin A-deficient rats doubled its thickness and contained irregularly scattered collagen fibrils. Immunocytochemistry revealed that these fibrils were composed of collagen I. Total content of both collagen I protein and its mRNA was greater in vitamin-deficient lungs. In agreement with the greater size of the BM the amount of collagen IV was also increased. Proinflammatory cytokines, IL-1alpha, IL-1beta and TNF-alpha, did not change, but myeloperoxidase and TGF-beta1 were increased. Treatment of vitamin A-deficient rats with retinoic acid reversed all the alterations, but the BM thickness recovered only partially. Retinoic acid recovering activity occurred in the presence of increasing oxidative stress. In conclusion, vitamin A deficiency results in alterations of the structure and composition of the alveolar BM which are probably mediated by TGF-beta1 and reverted by retinoic acid. These alterations could contribute to the impairment of lung function and predispose to pulmonary disease.
Biochemical and Biophysical Research Communications | 1980
Joaquin Soler; Joaquín Timoneda; Dolores de Arriaga; Santiago Grisolia
Summary Rat liver carbamyl phosphate synthase (EC.2.7.2.5) and adenosine triphosphatase (EC.3.6.1.3) are inactivated at or near intracellular pH by component(s) of the inner mitochondrial membrane in combination with lysosomal enzymes. At the pH range 6–7.4, lysosomal enzymes have little or no effect on carbamyl phosphate synthase and particularly on adenosine triphosphatase. However, at this pH adenosine triphosphatase, which has been exposed first to inner membrane preparations, is inactivated more rapidly on addition of lysosomal preparations. The inactivation is time and inner membrane concentration dependent. The inactivation by inner membrane appears to result in limited or minimal proteolysis as judged by release of acid soluble radioactivity using labelled carbamyl phosphate synthase. Thus, it appears that the inner membrane plays an initial role in the degradation of some mitochondrial proteins.
Journal of Nutritional Biochemistry | 2013
Guillermo Esteban-Pretel; M. Pilar Marín; Jaime Renau-Piqueras; Yoshikazu Sado; Teresa Barber; Joaquín Timoneda
Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet until 60 days old. A subgroup of vitamin-A-deficient pups received daily intraperitoneal all-trans-retinoic acid injections for 10 days. Collagen IV and laminin chain composition were modified in vitamin-A-deficient rats. The protein and mRNA contents of chains α1(IV), α3(IV) and α4(IV) increased; those of chains α2(IV) and α5(IV) remained unchanged; and the protein and mRNA contents of laminin chains α5, β1 and γ1 decreased. The mRNA of laminin chains α2 and α4 also decreased. Matrix metalloproteinases 2 and 9 decreased, but the tissue inhibitors of metalloproteinases 1 and 2 did not change. Treating vitamin-A-deficient rats with retinoic acid reversed all alterations, but laminin chains α2, α4 and α5 and matrix metalloproteinase 2 remained low. In conclusion, vitamin A deficiency alters the subunit composition of collagen IV and laminin and the lungs proteolytic potential, which are partly reverted by retinoic acid. These alterations could contribute to impaired lung function and predispose to pulmonary disease.
Connective Tissue Research | 1990
Joaquín Timoneda; Sripad Gunwar; Gloria Monfort; Juan Saus; Milton E. Noelken; Billy G. Hudson
The noncollagenous domain of basement membrane collagen exists as a hexamer upon excision with bacterial collagenase. Two hexamer subtypes, differing in subunit composition, have been identified and several additional subtypes are possible because at least two, and possibly more, triple-helical molecules, differing in chain composition, exist in authentic basement membranes (Saus J, Wieslander J, Langeveld JPM, Quinones S, and Hudson BG. (1988) Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J. Biol. Chem. 263:13374-13380). In the present study, the physiochemical behavior of hexamer during two-dimensional electrophoresis was evaluated. The hexamers from three different membranes of bovine origin (lens capsule, glomerular, and placenta) were found to exhibit an unusual dissociative property during the pH gradient electrophoresis used in the first dimension; namely, the hexamers dissociate under nondenaturing conditions into monomer and dimer subunits concomitant with the resolution of subunits. This dissociative property provided the basis for a new procedure using chromatofocusing for the preparative resolution of hexamer subunits with retention of their native structure and capacity to associate into a hexamer configuration. Associative studies revealed that the capacity for hexamer assembly is contained within the monomer subunit, a property which may be of fundamental importance in the mechanism of the assembly of collagen IV protomers and the association of protomers forming a supramolecular structure.