Guillermo Mariño
Institut Gustave Roussy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillermo Mariño.
Molecular Cell | 2010
Guido Kroemer; Guillermo Mariño; Beth Levine
Autophagy is a tightly regulated pathway involving the lysosomal degradation of cytoplasmic organelles or cytosolic components. This pathway can be stimulated by multiple forms of cellular stress, including nutrient or growth factor deprivation, hypoxia, reactive oxygen species, DNA damage, protein aggregates, damaged organelles, or intracellular pathogens. Both specific, stimulus-dependent and more general, stimulus-independent signaling pathways are activated to coordinate different phases of autophagy. Autophagy can be integrated with other cellular stress responses through parallel stimulation of autophagy and other stress responses by specific stress stimuli, through dual regulation of autophagy and other stress responses by multifunctional stress signaling molecules, and/or through mutual control of autophagy and other stress responses. Thus, autophagy is a cell biological process that is a central component of the integrated stress response.
Cell | 2011
David C. Rubinsztein; Guillermo Mariño; Guido Kroemer
Genetic inhibition of autophagy induces degenerative changes in mammalian tissues that resemble those associated with aging, and normal and pathological aging are often associated with a reduced autophagic potential. Pharmacological or genetic manipulations that increase life span in model organisms often stimulate autophagy, and its inhibition compromises the longevity-promoting effects of caloric restriction, Sirtuin 1 activation, inhibition of insulin/insulin growth factor signaling, or the administration of rapamycin, resveratrol, or spermidine. Here, we discuss the probable cause and effect relationship between perturbed autophagy and aging, as well as possible molecular mechanisms that may mediate the anti-aging effects of autophagy.
Journal of Biological Chemistry | 2007
Guillermo Mariño; Natalia Salvador-Montoliu; Antonio Fueyo; Erwin Knecht; Noboru Mizushima; Carlos López-Otín
Atg4C/autophagin-3 is a member of a family of cysteine proteinases proposed to be involved in the processing and delipidation of the mammalian orthologues of yeast Atg8, an essential component of an ubiquitin-like modification system required for execution of autophagy. To date, the in vivo role of the different members of this family of proteinases remains unclear. To gain further insights into the functional relevance of Atg4 orthologues, we have generated mutant mice deficient in Atg4C/autophagin-3. These mice are viable and fertile and do not display any obvious abnormalities, indicating that they are able to develop the autophagic response required during the early neonatal period. However, Atg4C-/--starved mice show a decreased autophagic activity in the diaphragm as assessed by immunoblotting studies and by fluorescence microscopic analysis of samples from Atg4C-/- GFP-LC3 transgenic mice. In addition, animals deficient in Atg4C show an increased susceptibility to develop fibrosarcomas induced by chemical carcinogens. Based on these results, we propose that Atg4C is not essential for autophagy development under normal conditions but is required for a proper autophagic response under stressful conditions such as prolonged starvation. We also propose that this enzyme could play an in vivo role in events associated with tumor progression.
Journal of Cell Biology | 2011
Eugenia Morselli; Guillermo Mariño; Martin V. Bennetzen; Tobias Eisenberg; Evgenia Megalou; Sabrina Schroeder; Sandra Cabrera; Paule Bénit; Pierre Rustin; Alfredo Criollo; Oliver Kepp; Lorenzo Galluzzi; Shensi Shen; Shoaib Ahmad Malik; Maria Chiara Maiuri; Yoshiyuki Horio; Carlos López-Otín; Jens S. Andersen; Nektarios Tavernarakis; Frank Madeo; Guido Kroemer
The acetylase inhibitor spermidine and the sirtuin-1 activator resveratrol disrupt the antagonistic network of acetylases and deacetylases that regulate autophagy.
Science | 2012
Laura Senovilla; Ilio Vitale; Isabelle Martins; Claire Pailleret; Mickaël Michaud; Lorenzo Galluzzi; Sandy Adjemian; Oliver Kepp; Mireia Niso-Santano; Shensi Shen; Guillermo Mariño; Alfredo Criollo; Alice Boilève; B. Job; Sylvain Ladoire; François Ghiringhelli; Antonella Sistigu; Takahiro Yamazaki; Santiago Rello-Varona; Clara Locher; Vichnou Poirier-Colame; Monique Talbot; Alexander Valent; Francesco Berardinelli; Antonio Antoccia; Fabiola Ciccosanti; Gian Maria Fimia; Mauro Piacentini; Antonio Fueyo; Nicole L. Messina
Keeping Cancer Cells At Bay Cancer cells are often aneuploid; that is, they have an abnormal number of chromosomes. But to what extent this contributes to the tumorigenic phenotype is not clear. Senovilla et al. (p. 1678; see the Perspective by Zanetti and Mahadevan) found that tetraploidization of cancer cells can cause them to become immunogenic and thus aid in their clearance from the body by the immune system. Cells with excess chromosomes put stress on the endoplasmic reticulum, which leads to movement of the protein calreticulin to the cell surface. Calreticulin exposure in turn caused recognition of cancer cells in mice by the host immune system. Thus, the immune system appears to serve a protective role in eliminating hyperploid cells that must be overcome to allow unrestricted growth of cancer cells. Polyploid cancer cells trigger an immune response owing to proteins aberrantly exposed on their outer surfaces. Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.
Journal of Biological Chemistry | 2003
Guillermo Mariño; José A. Uría; Xose S. Puente; Víctor Quesada; Javier Bordallo; Carlos López-Otín
We have cloned four human cDNAs encoding putative cysteine proteinases that have been tentatively called autophagins. These proteins are similar to Apg4/Aut2, a yeast enzyme involved in the activation of Apg8/Aut7 during the process of autophagy. The identified proteins ranging in length from 393 to 474 amino acids also contain several structural features characteristic of cysteine proteinases including a conserved cysteine residue that is essential for the catalytic properties of these enzymes. Northern blot analysis demonstrated that autophagins are broadly distributed in human tissues, being especially abundant in skeletal muscle. Functional and morphological analysis in autophagy-defective yeast strains lacking Apg4/Aut2 revealed that human autophagins-1 and -3 were able to complement the deficiency in the yeast protease, restoring the phenotypic and biochemical characteristics of autophagic cells. Enzymatic studies performed with autophagin-3, the most widely expressed human autophagin, revealed that the recombinant protein hydrolyzed the synthetic substrate Mca-Thr-Phe-Gly-Met-Dpa-NH2 whose sequence derives from that present around the Apg4 cleavage site in yeast Apg8/Aut7. This proteolytic activity was diminished byN-ethylmaleimide, an inhibitor of cysteine proteases including yeast Apg4/Aut2. These results provide additional evidence that the autophagic process widely studied in yeast can also be fully reconstituted in human tissues and open the possibility to explore the relevance of the autophagin-based proteolytic system in the induction, regulation, and execution of autophagy.
Cellular and Molecular Life Sciences | 2004
Guillermo Mariño; Carlos López-Otín
Autophagy is a degradative mechanism mainly involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Over the last years, yeast genetic screens have considerably increased our knowledge about the molecular mechanisms of autophagy, and a number of genes involved in fundamental steps of the autophagic pathway have been identified. Most of these autophagy genes are present in higher eukaryotes indicating that this process has been evolutionarily conserved. In yeast, autophagy is mainly involved in adaptation to starvation, but in multicellular organisms this route has emerged as a multifunctional pathway involved in a variety of additional processes such as programmed cell death, removal of damaged organelles and development of different tissue-specific functions. Furthermore, autophagy is associated with a growing number of pathological conditions, including cancer, myopathies and neurodegenerative disorders. The physiological and pathological roles of autophagy, as well as the molecular mechanisms underlying this multifunctional pathway, are discussed in this review.
Molecular Cell | 2014
Guillermo Mariño; Federico Pietrocola; Tobias Eisenberg; Yongli Kong; Shoaib Ahmad Malik; Aleksandra Andryushkova; Sabrina Schroeder; Tobias Pendl; Alexandra Harger; Mireia Niso-Santano; Naoufal Zamzami; Marie Scoazec; Silvère Durand; David P. Enot; Álvaro F. Fernández; Isabelle Martins; Oliver Kepp; Laura Senovilla; Chantal Bauvy; Eugenia Morselli; Erika Vacchelli; Martin V. Bennetzen; Christoph Magnes; Frank Sinner; Thomas R. Pieber; Carlos López-Otín; Maria Chiara Maiuri; Patrice Codogno; Jens S. Andersen; Joseph A. Hill
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
The EMBO Journal | 2011
Alejandro P. Ugalde; Andrew J. Ramsay; Jorge de la Rosa; Ignacio Varela; Guillermo Mariño; Juan Cadiñanos; Jun Lu; José Mp Freije; Carlos López-Otín
Aging is a multifactorial process that affects most of the biological functions of the organism and increases susceptibility to disease and death. Recent studies with animal models of accelerated aging have unveiled some mechanisms that also operate in physiological aging. However, little is known about the role of microRNAs (miRNAs) in this process. To address this question, we have analysed miRNA levels in Zmpste24‐deficient mice, a model of Hutchinson–Gilford progeria syndrome. We have found that expression of the miR‐29 family of miRNAs is markedly upregulated in Zmpste24−/− progeroid mice as well as during normal aging in mouse. Functional analysis revealed that this transcriptional activation of miR‐29 is triggered in response to DNA damage and occurs in a p53‐dependent manner since p53−/− murine fibroblasts do not increase miR‐29 expression upon doxorubicin treatment. We have also found that miR‐29 represses Ppm1d phosphatase, which in turn enhances p53 activity. Based on these results, we propose the existence of a novel regulatory circuitry involving miR‐29, Ppm1d and p53, which is activated in aging and in response to DNA damage.
Current Opinion in Cell Biology | 2011
Guillermo Mariño; Frank Madeo; Guido Kroemer
Although autophagy has frequently been viewed as a cell death mechanism in the mammalian system, it is now considered as indispensable for the homeostasis of cells, tissues, and organisms. Basal or stress-induced autophagy plays essential and diverse roles in a variety of tissues, due to its cytoprotective properties. In this review, we briefly discuss the different homeostatic functions of autophagy that have been finely dissected in mammals through the generation and characterization of animal models with tissue-specific autophagic alterations. In addition, and given the importance of constitutive autophagy in neuronal tissues, we describe in more detail the specific roles of autophagy in the central nervous system (CNS). Finally, we discuss the contribution of autophagy malfunctions to the development of several common neurological disorders and the potential benefits of pharmacologically induced autophagy for the avoidance of neurodegeneration.