Gundula S. Kolb
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gundula S. Kolb.
Ecosystems | 2010
Gundula S. Kolb; Lenn Jerling; Peter A. Hambäck
This study investigated the effects of cormorant colonies on plant–arthropod island food webs, the consequences of nutrient-rich runoff on marine communities, and feedback loops from marine to terrestrial ecosystems. Terrestrial plant responses were as expected, with the highest plant biomass on islands with low nest density and the highest nitrogen (N) content on islands with high nest density. In contrast to our hypothesis, we found no uniform density response across guilds. Among herbivores, the variable responses may depend on the relative importance of plant quality or quantity. As expected, nutrient-rich runoff entered water bodies surrounding cormorant nesting islands, but only at high nest density, and increased the density of emerging insects. This created a potential feed-back loop to spiders (major terrestrial predators), where stable isotope analyses suggested great use of chironomids. Contrary to our expectation, this potential feed-back did not result in the highest spider density on islands with a high cormorant nest density. Web spiders showed no changes in density on active cormorant islands, and lycosids were actually less abundant on active cormorant islands compared to reference islands. The variable response of spiders despite increased dipteran densities, and also in other consumer groups, may be due to direct negative effects of cormorants on soil chemistry, vegetation cover, and other density regulating forces (for example, top–down forces) not studied here. This study highlights the importance of including processes in the surrounding marine ecosystem to understand the impacts of seabirds on the food web structures of their nesting islands.
PLOS ONE | 2015
Hélène Audusseau; Gundula S. Kolb; Niklas Janz
Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io) to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in A. urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year). We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities.
AMBIO: A Journal of the Human Environment | 2015
Alma Strandmark; Arvid Bring; Sara A. O. Cousins; Georgia Destouni; Hans Kautsky; Gundula S. Kolb; Maricela de la Torre-Castro; Peter A. Hambäck
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.
PLOS ONE | 2013
Gundula S. Kolb; Cecilia Palmborg; Peter A. Hambäck
Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.
Insects | 2015
Gundula S. Kolb; Peter A. Hambäck
Theoretical arguments suggest that increased plant productivity may not only increase consumer densities but also their fluctuations. While increased consumer densities are commonly observed in fertilization experiments, experiments are seldom performed at a spatial and temporal scale where effects on population fluctuations may be observed. In this study we used a natural gradient in soil fertility caused by cormorant nesting. Cormorants feed on fish but defecate on their nesting islands. On these islands we studied soil nutrient availability, plant nutrient content and the density of Galerucella beetles, main herbivores feeding on Lythrum salicaria. In a common garden experiment, we followed larval development on fertilized plants and estimated larval stoichiometry. Soil nutrient availability varied among islands, and several cormorant islands had very high N and P soil content. Plant nutrient content, however, did not vary among islands, and there was no correlation between soil and plant nutrient contents. Beetle densities increased with plant nutrient content in the field study. However, there was either no effect on temporal fluctuations in beetle density or that temporal fluctuations decreased (at high P). In the common garden experiment, we found limited responses in either larval survival or pupal weights to fertilization. A possible mechanism for the limited effect of fertilization on density fluctuations may be that the distribution of L. salicaria on nesting islands was restricted to sites with a lower N and P content, presumably because high N loads are toxic.
Marine Ecology Progress Series | 2010
Gundula S. Kolb; Janna Ekholm; Peter A. Hambäck
Oikos | 2009
Peter A. Hambäck; James Gilbert; Katie Schneider; Holly M. Martinson; Gundula S. Kolb; William F. Fagan
Ecography | 2012
Gundula S. Kolb; Lenn Jerling; Carolina Essenberg; Cecilia Palmborg; Peter A. Hambäck
Ecosystems | 2015
Gundula S. Kolb; Cecilia Palmborg; Astrid R. Taylor; Erland Bååth; Peter A. Hambäck
Archive | 2015
Gundula S. Kolb; Peter A. Hambäck; Brian T. Forschler