Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunilla Svensson is active.

Publication


Featured researches published by Gunilla Svensson.


Nature | 2008

Vertical structure of recent Arctic warming

Rune Grand Graversen; Thorsten Mauritsen; Michael Tjernström; Erland Källén; Gunilla Svensson

Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades—a phenomenon that is known as the ‘Arctic amplification’. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.


Bulletin of the American Meteorological Society | 2013

Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models

A.A.M. Holtslag; Gunilla Svensson; Peter Baas; Sukanta Basu; B. Beare; Anton Beljaars; Fred C. Bosveld; Joan Cuxart; Jenny Lindvall; G.J. Steeneveld; Michael Tjernström; B.J.H. van de Wiel

The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For thi...


Journal of Applied Meteorology and Climatology | 2008

Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and Contrasting Nights in CASES-99

G.J. Steeneveld; Thorsten Mauritsen; E.I.F. de Bruijn; J. Vilà-Guerau de Arellano; Gunilla Svensson; A.A.M. Holtslag

This study evaluates the ability of three limited-area models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Coupled Ocean– Atmosphere Mesoscale Prediction System (COAMPS), and the High-Resolution Limited-Area Model (HIRLAM)] to predict the diurnal cycle of the atmospheric boundary layer (ABL) during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) experimental campaign. Special attention is paid to the stable ABL. Limited-area model results for different ABL parameterizations and different radiation transfer parameterizations are compared with the in situ observations. Model forecasts were found to be sensitive to the choice of the ABL parameterization both during the day and at night. At night, forecasts are particularly sensitive to the radiation scheme. All three models underestimate the amplitude of the diurnal temperature cycle (DTR) and the near-surface wind speed. Furthermore, they overestimate the stable boundary layer height for windy conditions and underestimate the stratification of nighttime surface inversions. Favorable parameterizations for the stable boundary layer enable rapid surface cooling, and they have limited turbulent mixing. It was also found that a relatively large model domain is required to model the Great Plains low-level jet. A new scheme is implemented for the stable boundary layer in the MediumRange Forecast Model (MRF). This scheme introduces a vegetation layer, a new formulation for the soil heat flux, and turbulent mixing based on the local scaling hypothesis. The new scheme improves the representation of surface temperature (especially for weak winds) and the stable boundary layer structure.


Journal of the Atmospheric Sciences | 2007

Observations of Stably Stratified Shear-Driven Atmospheric Turbulence at Low and High Richardson Numbers

Thorsten Mauritsen; Gunilla Svensson

Abstract Stably stratified shear-driven turbulence is analyzed using the gradient Richardson number, Ri, as the stability parameter. The method overcomes the statistical problems associated with the widely used Monin–Obukhov stability parameter. The results of the Ri-based scaling confirm the presence of three regimes: the weakly and the very stable regimes and the transition in between them. In the weakly stable regime, fluxes scale in proportion with variance, while in the very stable regime, stress and scalar fluxes behave differently. At large Ri, the velocity field becomes highly anisotropic and the turbulent potential energy becomes approximately equal to half of the turbulent kinetic energy. It appears that even in the strongly stable regime, beyond what is known as the critical gradient Richardson number, turbulent motions are present.


Journal of the Atmospheric Sciences | 2007

A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers

Thorsten Mauritsen; Gunilla Svensson; S. S. Zilitinkevich; Igor Esau; Leif Enger; Branko Grisogono

This paper presents a turbulence closure for neutral and stratified atmospheric conditions. The closure is based on the concept of the total turbulent energy. The total turbulent energy is the sum of the turbulent kinetic energy and turbulent potential energy, which is proportional to the potential temperature variance. The closure uses recent observational findings to take into account the mean flow stability. These observations indicate that turbulent transfer of heat and momentum behaves differently under very stable stratification. Whereas the turbulent heat flux tends toward zero beyond a certain stability limit, the turbulent stress stays finite. The suggested scheme avoids the problem of self-correlation. The latter is an improvement over the widely used Monin–Obukhov-based closures. Numerous large-eddy simulations, including a wide range of neutral and stably stratified cases, are used to estimate likely values of two free constants. In a benchmark case the new turbulence closure performs indistinguishably from independent large-eddy simulations.


Boundary-Layer Meteorology | 2014

The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part B: Results and Process Understanding

Fred C. Bosveld; Peter Baas; G.J. Steeneveld; Albert A. M. Holtslag; Wayne M. Angevine; Eric Bazile; Evert I. F. de Bruijn; Daniel Deacu; John M. Edwards; Michael B. Ek; Vincent E. Larson; Jonathan E. Pleim; Matthias Raschendorfer; Gunilla Svensson

We describe and analyze the results of the third global energy and water cycle experiment atmospheric boundary layer Study intercomparison and evaluation study for single-column models. Each of the nineteen participating models was operated with its own physics package, including land-surface, radiation and turbulent mixing schemes, for a full diurnal cycle selected from the Cabauw observatory archive. By carefully prescribing the temporal evolution of the forcings on the vertical column, the models could be evaluated against observations. We focus on the gross features of the stable boundary layer (SBL), such as the onset of evening momentum decoupling, the 2-m minimum temperature, the evolution of the inertial oscillation and the morning transition. New process diagrams are introduced to interpret the variety of model results and the relative importance of processes in the SBL; the diagrams include the results of a number of sensitivity runs performed with one of the models. The models are characterized in terms of thermal coupling to the soil, longwave radiation and turbulent mixing. It is shown that differences in longwave radiation schemes among the models have only a small effect on the simulations; however, there are significant variations in downward radiation due to different boundary-layer profiles of temperature and humidity. The differences in modelled thermal coupling to the land surface are large and explain most of the variations in 2-m air temperature and longwave incoming radiation among models. Models with strong turbulent mixing overestimate the boundary-layer height, underestimate the wind speed at 200 m, and give a relatively large downward sensible heat flux. The result is that 2-m air temperature is relatively insensitive to turbulent mixing intensity. Evening transition times spread 1.5 h around the observed time of transition, with later transitions for models with coarse resolution. Time of onset in the morning transition spreads 2 h around the observed transition time. With this case, the morning transition appeared to be difficult to study, no relation could be found between the studied processes, and the variation in the time of the morning transition among the models.


Geophysical Research Letters | 2016

Melt onset over Arctic sea ice controlled by atmospheric moisture transport

Jonas Mortin; Gunilla Svensson; Rune G. Graversen; Marie-Luise Kapsch; Julienne Stroeve; Linette N. Boisvert

The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.


Journal of Applied Meteorology and Climatology | 2010

Subtropical Cloud-Regime Transitions: Boundary Layer Depth and Cloud-Top Height Evolution in Models and Observations

Johannes Karlsson; Gunilla Svensson; Sambingo Cardoso; Joao Teixeira; Susan Paradise

Abstract In this study, the mean and variability of boundary layer height (BLH) are analyzed along a transect in the eastern Pacific Ocean for the summer of 2003 using BLH estimates based on the height of the main relative humidity (RH) inversion and the height of low cloud tops (CTH). The observations and the regional and global model data have been prepared in the context of the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI). The GPCI transect covers the transition from a stratocumulus-topped marine boundary layer (MBL) off the coast of California to a trade cumulus–topped, less-well-defined, MBL, and finally to the deep-convection regions in the intertropical convergence zone (ITCZ). The Atmospheric Infrared Sounder (AIRS) and the Multiangle Imaging Spectroradiometer (MISR) have been used to derive observational records of the two BLH estimates. Analyses from the ECMWF are also used in the study. Both BLH estimates in the models, ...


Tellus A | 2013

Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis

Raza Ranjha; Gunilla Svensson; Michael Tjernström; Alvaro Semedo

A low-level wind maximum is often found over the oceans near many coasts around the world. These Coastal Low-Level Jets (CLLJs) play an important role in the coastal weather and have significant impacts on regional climate and ecology as well as on a number of human activities. The presence of CLLJs is related to various local circumstances such as land-sea temperature contrasts, upwelling, coastal terrain, orientation of the coast, and so on, but also to the large-scale atmospheric dynamics. This makes studies of CLLJs not only interesting but also challenging. In this study, based on ERA-Interim reanalysis data, the global distribution, spatio-temporal structure and the seasonal variability of CLLJs are documented. Seasonal data from 1980 to 2011 are used to identify areas where CLLJs are frequently found in the lowest 2 km, following criteria based on the vertical profiles of wind speed and temperature. The results are analysed to highlight the fundamental aspects and distinctive features of the CLLJs across the globe, including their occurrence rate, jet height, maximum wind speed and horizontal extent. Global maps of CLLJs are constructed for the summer and winter seasons. The west coasts of North America, the Iberian Peninsula, north-western Africa and the south-eastern coast of the Arabian Peninsula make up the Northern Hemispheric CLLJ regions, while the west coasts of South America, Australia, and southern Africa comprise the South Hemispheric equivalents. The existence and characteristics of CLLJs along the southern coast of Oman and the western coast of the Iberian Peninsula regions are also discussed, not fully envisaged before in the context of CLLJs. The highest occurrence of CLLJs is found during the summer in both hemispheres, and the coast of Oman has the globally highest CLLJ frequency, with also the highest maximum wind speeds. The most commonly found CLLJ has a maximum wind speed between 9 and 15 m s−1, and occurs at heights between 500 and 700 m a.s.l.


Journal of Applied Meteorology and Climatology | 2010

Impact of Surface Flux Formulations and Geostrophic Forcing on Large-Eddy Simulations of Diurnal Atmospheric Boundary Layer Flow

Vijayant Kumar; Gunilla Svensson; A.A.M. Holtslag; Charles Meneveau; Marc B. Parlange

Theimpact ofsurfacefluxboundaryconditionsandgeostrophic forcingon multidayevolutionofflow in the atmospheric boundarylayer (ABL) was assessed using large-eddy simulations (LES). The LES investigations included several combinations of surface boundary conditions (temperature and heat flux) and geostrophic forcing (constant, time varying, time and height varying). The setup was based on ABL characteristics observedduringaselectedperiodoftheCooperativeAtmosphere‐SurfaceExchangeStudy—1999(CASES-99) campaign. The LES cases driven by a constant geostrophic wind achieved the best agreement with the CASES-99 observations specifically in terms of daytime surface fluxes and daytime and nighttime profiles. However, the nighttime fluxes were significantly overestimated. The LES cases with the surface temperature boundary condition and driven by a time- and height-varying geostrophic forcing showed improved agreement with the observed nighttime fluxes, but there was less agreement with other observations (e.g., daytime profiles). In terms of the surface boundary condition, the LES cases driven by either surface temperature or heat fluxes produced similar trends in terms of the daytime profiles and comparisons with data from soundings. However, in reproducing the fluxes and nighttime profiles, the agreement was better with imposed temperature because of its ability to interact dynamically with the air temperature field. Therefore, it is concludedthatsurfacetemperatureboundaryconditionisbettersuitedforsimulationsoftemporallyevolving ABL flow as in the diurnal evolution of the ABL.

Collaboration


Dive into the Gunilla Svensson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.J. Steeneveld

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Brandenburg

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge