Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar Cario is active.

Publication


Featured researches published by Gunnar Cario.


The Lancet | 2008

Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome

Dani Bercovich; Ithamar Ganmore; Linda M. Scott; Gilad Wainreb; Yehudit Birger; Arava Elimelech; Chen Shochat; Giovanni Cazzaniga; Andrea Biondi; Giuseppe Basso; Gunnar Cario; Martin Schrappe; Martin Stanulla; Sabine Strehl; Oskar A. Haas; Georg Mann; Vera Binder; Arndt Borkhardt; Helena Kempski; Jan Trka; Bella Bielorei; Smadar Avigad; Batia Stark; Owen P. Smith; Nicole Dastugue; Jean Pierre Bourquin; Nir Ben Tal; Anthony R. Green; Shai Izraeli

BACKGROUND Children with Downs syndrome have a greatly increased risk of acute megakaryoblastic and acute lymphoblastic leukaemias. Acute megakaryoblastic leukaemia in Downs syndrome is characterised by a somatic mutation in GATA1. Constitutive activation of the JAK/STAT (Janus kinase and signal transducer and activator of transcription) pathway occurs in several haematopoietic malignant diseases. We tested the hypothesis that mutations in JAK2 might be a common molecular event in acute lymphoblastic leukaemia associated with Downs syndrome. METHODS JAK2 DNA mutational analysis was done on diagnostic bone marrow samples obtained from 88 patients with Downs syndrome-associated acute lymphoblastic leukaemia; and 216 patients with sporadic acute lymphoblastic leukaemia, Downs syndrome-associated acute megakaryoblastic leukaemia, and essential thrombocythaemia. Functional consequences of identified mutations were studied in mouse haematopoietic progenitor cells. FINDINGS Somatically acquired JAK2 mutations were identified in 16 (18%) patients with Downs syndrome-associated acute lymphoblastic leukaemia. The only patient with non-Downs syndrome-associated leukaemia but with a JAK2 mutation had an isochromosome 21q. Children with a JAK2 mutation were younger (mean [SE] age 4.5 years [0.86] vs 8.6 years [0.59], p<0.0001) at diagnosis. Five mutant alleles were identified, each affecting a highly conserved arginine residue (R683). These mutations immortalised primary mouse haematopoietic progenitor cells in vitro, and caused constitutive Jak/Stat activation and cytokine-independent growth of BaF3 cells, which was sensitive to pharmacological inhibition with JAK inhibitor I. In modelling studies of the JAK2 pseudokinase domain, R683 was situated in an exposed conserved region separated from the one implicated in myeloproliferative disorders. INTERPRETATION A specific genotype-phenotype association exists between the type of somatic mutation within the JAK2 pseudokinase domain and the development of B-lymphoid or myeloid neoplasms. Somatically acquired R683 JAK2 mutations define a distinct acute lymphoblastic leukaemia subgroup that is uniquely associated with trisomy 21. JAK2 inhibitors could be useful for treatment of this leukaemia. FUNDING Israel Trade Ministry, Israel Science Ministry, Jewish National Fund UK, Sam Waxman Cancer Research Foundation, Israel Science Foundation, Israel Cancer Association, Curtis Katz, Constantiner Institute for Molecular Genetics, German-Israel Foundation, and European Commission FP6 Integrated Project EUROHEAR.


Blood | 2010

Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group.

Libi Hertzberg; Elena Vendramini; Ithamar Ganmore; Giovanni Cazzaniga; Maike Schmitz; Jane Chalker; Ruth Shiloh; Ilaria Iacobucci; Chen Shochat; Sharon Zeligson; Gunnar Cario; Martin Stanulla; Sabine Strehl; Lisa J. Russell; Christine J. Harrison; Beat C. Bornhauser; Akinori Yoda; Gideon Rechavi; Dani Bercovich; Arndt Borkhardt; Helena Kempski; Geertruy te Kronnie; Jean-Pierre Bourquin; Eytan Domany; Shai Izraeli

We report gene expression and other analyses to elucidate the molecular characteristics of acute lymphoblastic leukemia (ALL) in children with Down syndrome (DS). We find that by gene expression DS-ALL is a highly heterogeneous disease not definable as a unique entity. Nevertheless, 62% (33/53) of the DS-ALL samples analyzed were characterized by high expression of the type I cytokine receptor CRLF2 caused by either immunoglobulin heavy locus (IgH@) translocations or by interstitial deletions creating chimeric transcripts P2RY8-CRLF2. In 3 of these 33 patients, a novel activating somatic mutation, F232C in CRLF2, was identified. Consistent with our previous research, mutations in R683 of JAK2 were identified in 10 specimens (19% of the patients) and, interestingly, all 10 had high CRLF2 expression. Cytokine receptor-like factor 2 (CRLF2) and mutated Janus kinase 2 (Jak2) cooperated in conferring cytokine-independent growth to BaF3 pro-B cells. Intriguingly, the gene expression signature of DS-ALL is enriched with DNA damage and BCL6 responsive genes, suggesting the possibility of B-cell lymphocytic genomic instability. Thus, DS confers increased risk for genetically highly diverse ALLs with frequent overexpression of CRLF2, associated with activating mutations in the receptor itself or in JAK2. Our data also suggest that the majority of DS children with ALL may benefit from therapy blocking the CRLF2/JAK2 pathways.


Journal of Clinical Investigation | 2010

Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance

Laura Bonapace; Beat C. Bornhauser; Maike Schmitz; Gunnar Cario; Urs Ziegler; Felix Niggli; Beat W. Schäfer; Martin Schrappe; Martin Stanulla; Jean-Pierre Bourquin

In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.


Blood | 2010

Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non–high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol

Gunnar Cario; Martin Zimmermann; Renja Romey; Stefan Gesk; Inga Vater; Jochen Harbott; André Schrauder; Anja Moericke; Shai Izraeli; Takashi Akasaka; Martin J. S. Dyer; Reiner Siebert; Martin Schrappe; Martin Stanulla

High-level expression of the cytokine receptor-like factor 2 gene, CRLF2, in precursor B-cell acute lymphoblastic leukemia (pB-ALL) was shown to be caused by a translocation involving the IGH@ locus or a deletion juxtaposing CRLF2 with the P2RY8 promoter. To assess its possible prognostic value, CRLF2 expression was analyzed in 555 childhood pB-ALL patients treated according to the Acute Lymphoblastic Leukemia Berlin-Frankfurt-Münster 2000 (ALL-BFM 2000) protocol. Besides CRLF2 rearrangements, high-level CRLF2 expression was seen in cases with supernumerary copies of the CRLF2 locus. On the basis of the detection of CRLF2 rearrangements, a CRLF2 high-expression group (n = 49) was defined. This group had a 6-year relapse incidence of 31% plus or minus 8% compared with 11% plus or minus 1% in the CRLF2 low-expression group (P = .006). This difference was mainly attributable to an extremely high incidence of relapse (71% +/- 19%) in non-high-risk patients with P2RY8-CRLF2 rearrangement. The assessment of CRLF2 aberrations may therefore serve as new stratification tool in Berlin-Frankfurt-Münster-based protocols by identifying additional high-risk patients who may benefit from an intensified and/or targeted treatment.


Blood | 2005

Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia

Gunnar Cario; Martin Stanulla; Bernard Fine; Oliver Teuffel; Nils von Neuhoff; André Schrauder; Thomas Flohr; Beat W. Schäfer; Claus R. Bartram; Karl Welte; Brigitte Schlegelberger; Martin Schrappe

Treatment resistance, as indicated by the presence of high levels of minimal residual disease (MRD) after induction therapy and induction consolidation, is associated with a poor prognosis in childhood acute lymphoblastic leukemia (ALL). We hypothesized that treatment resistance is an intrinsic feature of ALL cells reflected in the gene expression pattern and that resistance to chemotherapy can be predicted before treatment. To test these hypotheses, gene expression signatures of ALL samples with high MRD load were compared with those of samples without measurable MRD during treatment. We identified 54 genes that clearly distinguished resistant from sensitive ALL samples. Genes with low expression in resistant samples were predominantly associated with cell-cycle progression and apoptosis, suggesting that impaired cell proliferation and apoptosis are involved in treatment resistance. Prediction analysis using randomly selected samples as a training set and the remaining samples as a test set revealed an accuracy of 84%. We conclude that resistance to chemotherapy seems at least in part to be an intrinsic feature of ALL cells. Because treatment response could be predicted with high accuracy, gene expression profiling could become a clinically relevant tool for treatment stratification in the early course of childhood ALL.


Nature Medicine | 2009

NAMPT is essential for the G-CSF–induced myeloid differentiation via a NAD+–sirtuin-1–dependent pathway

Julia Skokowa; Dan Lan; Basant Kumar Thakur; Fei Wang; Kshama Gupta; Gunnar Cario; Annette Müller Brechlin; Axel Schambach; Lars Hinrichsen; Gustav Meyer; Matthias Gaestel; Martin Stanulla; Qiang Tong; Karl Welte

We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia. Intracellular NAMPT and NAD+ amounts in myeloid cells, as well as plasma NAMPT and NAD+ levels, were increased by G-CSF treatment of both healthy volunteers and individuals with congenital neutropenia. NAMPT administered both extracellularly and intracellularly induced granulocytic differentiation of CD34+ hematopoietic progenitor cells and of the promyelocytic leukemia cell line HL-60. Treatment of healthy individuals with high doses of vitamin B3 (nicotinamide), a substrate of NAMPT, induced neutrophilic granulocyte differentiation. The molecular events triggered by NAMPT include NAD+-dependent sirtuin-1 activation, subsequent induction of CCAAT/enhancer binding protein-α and CCAAT/enhancer binding protein-β, and, ultimately, upregulation of G-CSF synthesis and G-CSF receptor expression. G-CSF, in turn, further increases NAMPT levels. These results reveal a decisive role of the NAD+ metabolic pathway in G-CSF-triggered myelopoiesis.


Leukemia | 2012

Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia.

Eva Ellinghaus; Martin Stanulla; Gesa M. Richter; David Ellinghaus; G te Kronnie; Gunnar Cario; G Cazzaniga; M Horstmann; R Panzer Grümayer; Hélène Cavé; Jan Trka; O Cinek; Andrea Teigler-Schlegel; Abdou ElSharawy; Robert Häsler; Almut Nebel; B Meissner; Thies Bartram; Francesco Lescai; Claudio Franceschi; Marco Giordan; Peter Nürnberg; B Heinzow; Maya Zimmermann; Stefan Schreiber; Martin Schrappe; Andre Franke

Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis.


BMC Medical Genetics | 2005

Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population

Eckart Schnakenberg; Andrea Mehles; Gunnar Cario; Klaus Rehe; Kathrin Seidemann; Brigitte Schlegelberger; Holger A Elsner; Karl Welte; Martin Schrappe; Martin Stanulla

BackgroundMethylenetetrahydrofolate reductase (MTHFR) has a major impact on the regulation of the folic acid pathway due to conversion of 5,10-methylenetetrahydrofolate (methylene-THF) to 5-methyl-THF. Two common polymorphisms (677C>T and 1298A>C) in the gene coding for MTHFR have been shown to reduce MTHFR enzyme activity and were associated with the susceptibility to different disorders, including vascular disease, neural tube defects and lymphoid malignancies. Studies on the role of these polymorphisms in the susceptibility to acute lymphoblastic leukemia (ALL) led to discrepant results.MethodsWe retrospectively evaluated the association of the MTHFR 677C>T and 1298A>C polymorphisms with pediatric ALL by genotyping a study sample of 443 ALL patients consecutively enrolled onto the German multicenter trial ALL-BFM 2000 and 379 healthy controls. We calculated odds ratios of MTHFR genotypes based on the MTHFR 677C>T and 1298A>C polymorphisms to examine if one or both of these polymorphisms are associated with pediatric ALL.ResultsNo significant associations between specific MTHFR variants or combinations of variants and risk of ALL were observed neither in the total patient group nor in analyses stratified by gender, age at diagnosis, DNA index, immunophenotype, or TEL/AML1 rearrangement.ConclusionOur findings suggest that the MTHFR 677C>T and 1298A>C gene variants do not have a major influence on the susceptibility to pediatric ALL in the German population.


Blood | 2014

Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group

Trudy Buitenkamp; Shai Izraeli; Martin Zimmermann; Erik Forestier; Nyla A. Heerema; Marry M. van den Heuvel-Eibrink; Rob Pieters; Carin M. Korbijn; Lewis B. Silverman; Kjeld Schmiegelow; Der-Cheng Liang; Keizo Horibe; Maurizio Aricò; Andrea Biondi; Giuseppe Basso; Karin R. Rabin; Martin Schrappe; Gunnar Cario; Georg Mann; Maria Morak; Renate Panzer-Grümayer; Veerle Mondelaers; Tim Lammens; Hélène Cavé; Batia Stark; Ithamar Ganmore; Anthony V. Moorman; Ajay Vora; Stephen P. Hunger; Ching-Hon Pui

Children with Down syndrome (DS) have an increased risk of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). The prognostic factors and outcome of DS-ALL patients treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled in 16 international trials from 1995 to 2004. Non-DS BCP-ALL patients from the Dutch Child Oncology Group and Berlin-Frankfurt-Münster were reference cohorts. DS-ALL patients had a higher 8-year cumulative incidence of relapse (26% ± 2% vs 15% ± 1%, P < .001) and 2-year treatment-related mortality (TRM) (7% ± 1% vs 2.0% ± <1%, P < .0001) than non-DS patients, resulting in lower 8-year event-free survival (EFS) (64% ± 2% vs 81% ± 2%, P < .0001) and overall survival (74% ± 2% vs 89% ± 1%, P < .0001). Independent favorable prognostic factors include age <6 years (hazard ratio [HR] = 0.58, P = .002), white blood cell (WBC) count <10 × 10(9)/L (HR = 0.60, P = .005), and ETV6-RUNX1 (HR = 0.14, P = .006) for EFS and age (HR = 0.48, P < .001), ETV6-RUNX1 (HR = 0.1, P = .016) and high hyperdiploidy (HeH) (HR = 0.29, P = .04) for relapse-free survival. TRM was the major cause of death in ETV6-RUNX1 and HeH DS-ALLs. Thus, while relapse is the main contributor to poorer survival in DS-ALL, infection-associated TRM was increased in all protocol elements, unrelated to treatment phase or regimen. Future strategies to improve outcome in DS-ALL should include improved supportive care throughout therapy and reduction of therapy in newly identified good-prognosis subgroups.


Leukemia | 2012

Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia

Chiara Palmi; Elena Vendramini; Daniela Silvestri; Giulia Longinotti; D. Frison; Gunnar Cario; Chen Shochat; Martin Stanulla; V. Rossi; A Di Meglio; T. Villa; Emanuela Giarin; Grazia Fazio; Anna Leszl; Martin Schrappe; G Basso; Andrea Biondi; Shai Izraeli; Valentino Conter; Maria Grazia Valsecchi; Gianni Cazzaniga; G te Kronnie

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has achieved an 80% cure rate as a result of a risk-adapted therapy largely based on minimal residual disease (MRD) monitoring. However, relapse is still the most frequent adverse event, occurring mainly in the patients with intermediate MRD levels (intermediate risk, IR), emphasizing the need for new prognostic markers. We analyzed the prognostic impact of cytokine receptor-like factor 2 (CRLF2) over-expression and P2RY8-CRLF2 fusion in 464 BCP-ALL patients (not affected by Down syndrome and BCR-ABL negative) enrolled in the AIEOP-BFM ALL2000 study in Italy. In 22/464 (4.7%) samples, RQ-PCR showed CRLF2 over-expression (⩾20 times higher than the overall median). P2RY8-CRLF2 fusion was detected in 22/365 (6%) cases, with 10/22 cases also showing CRLF2 over-expression. P2RY8-CRLF2 fusion was the most relevant prognostic factor independent of CRLF2 over-expression with a threefold increase in risk of relapse. Significantly, the cumulative incidence of relapse of the P2RY8-CRLF2+ patients in the IR group was high (61.1%±12.9 vs 17.6%±2.6, P<0.0001), similar to high-risk patients in AIEOP-BFM ALL2000 study. These results were confirmed in a cohort of patients treated in Germany. In conclusion, P2RY8-CRLF2 identifies a subset of BCP-ALL patients currently stratified as IR that could be considered for treatment intensification.

Collaboration


Dive into the Gunnar Cario's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Welte

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Jan Trka

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge