Gunnar Glöckl
University of Greifswald
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gunnar Glöckl.
Journal of Physics: Condensed Matter | 2006
Gunnar Glöckl; Rudolf Hergt; Matthias Zeisberger; Silvio Dutz; Stefan Nagel; Werner Weitschies
Magnetic nanoparticles (MNP) are intended for utilization in cancer therapy as they produce damaging heat in the presence of AC magnetic fields. In order to reach the required temperature with minimum particle concentration in tissue the specific heating power (SHP) of MNP should be as high as possible. The aim was to clarify the influence of magnetic field parameters and nanoparticle properties on the SHP. As usual ferrofluids exhibit broad size distributions, a magnetic fractionation of a commercial iron oxide nanoparticle suspension was performed in order to obtain particles with varying properties. The fractions obtained were characterized by means of atomic force microscopy and magnetometry, among other techniques. Frequency spectra of the susceptibility show clear peaks at low frequencies related to the Brown relaxation. This effect vanishes after particle immobilization. Theoretical spectra considering experimentally determined size distributions are in agreement with experimental data. The SHP derived from AC susceptometry is in accordance with that directly determined by calorimetry. A maximum SHP of 160 W g−1 (400 kHz, 8 kA m−1) was detected for the largest particles, showing a behaviour in the transitional regime between superparamagnetic and stable ferromagnetic.
Nanotechnology | 2007
Erik Romanus; T Koettig; Gunnar Glöckl; S Prass; F Schmidl; Jochen Heinrich; Manesh Gopinadhan; D V Berkov; Christiane A. Helm; Werner Weitschies; P Weber; P. Seidel
A recently introduced method for the characterization of magnetic nanoparticles (MNPs) based on the analysis of the temperature-dependent Neel relaxation signal (TMRX) has been applied to characterize maghemite particles with different particle size distributions. The samples were made using an improved magnetic fractionation method for a ferrofluid with a broad particle size distribution. The temperature range of the measurement set-up has been extended from 315 K down to 4 K to detect even the smallest particles in the fractions. A mean magnetically relevant particle size has been derived from TMRX and low temperature coercivity measurements and has been compared to the physical size determined by atomic force microscopy (AFM) investigations.
Nano Letters | 2011
Stephan Block; Gunnar Glöckl; Werner Weitschies; Christiane A. Helm
Because of its outstanding ability to image and manipulate single molecules, atomic force microscopy (AFM) established itself as a fundamental technique in nanobiotechnology. (1) We present a new modality that distinguishes single nanoparticles by the surrounding magnetic field gradient. Diamagnetic gold and superparamagnetic iron oxide nanoparticles become discernible under ambient conditions. Images of proteins, magnetolabeled with nanoparticles, demonstrate the first steps toward a magnetic analogue to fluorescence microscopy, which combines nanoscale lateral resolution of AFM with unambiguous detection of magnetic markers.
Journal of Physics: Condensed Matter | 2006
Konstanze Aurich; Gunnar Glöckl; E Romanus; P Weber; Stefan Nagel; Werner Weitschies
Measurements of the magneto-optical relaxation of ferrofluids (MORFF) were applied as a novel homogeneous immunoassay for the investigation of biomolecular interactions. The technique is based on magnetic nanoparticles (MNP) functionalized with antibodies. The relaxation time of the optical birefringence that occurs when a pulsed magnetic field is applied to the nanoparticle suspension depends on the particle size. This enables the detection of particle aggregates formed after the addition of the antigen coupling partner. MORFF size measurements on the original ferrofluid and its fractions obtained by magnetic fractionation are comparable with results from other methods such as atomic force microscopy and photon correlation spectroscopy. In kinetic studies, the binding properties of five antigens and their polyclonal antibodies were investigated: human immunoglobulin G (hIgG), human immunoglobulin M (hIgM), human Eotaxin (hEotaxin), human carcinoembryonic antigen (hCEA), and human insulin (hInsulin). The enlargement of the relaxation time observed during the coupling experiments is expressed in terms of a size distribution function, which includes MNP monomers as well as aggregates. The kinetic process can be described by a model of stepwise polymerization. The kinetic parameters obtained are compared to results of surface plasmon resonance measurements.
Gut | 2016
Ujjwal M. Mahajan; Steffen Teller; Matthias Sendler; Raghavendra Palankar; Cindy van den Brandt; Theresa Schwaiger; Jens-Peter Kühn; Silvia Ribback; Gunnar Glöckl; Matthias Evert; Werner Weitschies; Norbert Hosten; Frank Dombrowski; Mihaela Delcea; Fu Weiss; Markus M. Lerch; Julia Mayerle
Objective Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and is projected to be the second leading cause of cancer-related death by 2030. Despite extensive knowledge and insights into biological properties and genetic aberrations of PDAC, therapeutic options remain temporary and ineffective. One plausible explanation for the futile response to therapy is an insufficient and non-specific delivery of anticancer drugs to the tumour site. Design Superparamagnetic iron oxide nanoparticles (SPIONs) coupled with siRNA directed against the cell cycle-specific serine-threonine-kinase, Polo-like kinase-1 (siPLK1-StAv-SPIONs), could serve a dual purpose for delivery of siPLK1 to the tumour and for non-invasive assessment of efficiency of delivery in vivo by imaging the tumour response. siPLK1-StAv-SPIONs were designed and synthesised as theranostics to function via a membrane translocation peptide with added advantage of driving endosomal escape for mediating transportation to the cytoplasm (myristoylated polyarginine peptides) as well as a tumour-selective peptide (EPPT1) to increase intracellular delivery and tumour specificity, respectively. Results A syngeneic orthotopic as well as an endogenous cancer model was treated biweekly with siPLK1-StAv-SPIONs and tumour growth was monitored by small animal MRI. In vitro and in vivo experiments using a syngeneic orthotopic PDAC model as well as the endogenous LSL-KrasG12D, LSL-Trp53R172H, Pdx-1-Cre model revealed significant accumulation of siPLK1-StAv-SPIONs in PDAC, resulting in efficient PLK1 silencing. Tumour-specific silencing of PLK1 halted tumour growth, marked by a decrease in tumour cell proliferation and an increase in apoptosis. Conclusions Our data suggest siPLK1-StAv-SPIONs with dual specificity residues for tumour targeting and membrane translocation to represent an exciting opportunity for targeted therapy in patients with PDAC.
European Journal of Pharmaceutical Sciences | 2012
Romy Baumann; Gunnar Glöckl; Stefan Nagel; Werner Weitschies
Magnetizable aerosols can be used for inhalative magnetic drug targeting in order to enhance the drug concentration at a certain target site within the lung. The aim of the present study was to clarify how a typical ferrofluid can be atomized in a reproducible way. The influence of the atomization principle, the concentration of magnetic nanoparticles within the carrier liquid and the addition of commonly used pharmaceutical excipients on the aerosol droplet size were investigated. Iron oxide (magnetite) nanoparticles were synthesized by alkaline precipitation of mixtures of iron(II)- and iron(III)-chloride and coated with citric acid. The resulting ferrofluid was characterized by photon correlation spectroscopy and vibrating sample magnetometry. Two different nebulizers (Pari Boy and eFlow) with different atomization principles were used to generate ferrofluid aerosols. A range of substances that influence the surface tension, viscosity, density or vapor pressure of the ferrofluid were added to investigate their impact on the generated aerosol droplets. The particle size was determined by laser diffraction. A stable ferrofluid with a magnetic core diameter of 10.7 ± 0.45 nm and a hydrodynamic diameter of 124 nm was nebulized by Pari Boy and eFlow. The aerosol droplet size of Pari Boy was approximately 2.5 μm and remained unaffected by the addition of substances that changed the physical properties of the solvent. The droplet size of aerosols generated by eFlow was approximately 5 μm. It was significantly reduced by the addition of Cremophor RH 40, glycerol, polyvinyl pyrrolidone and ethanol.
Journal of Magnetism and Magnetic Materials | 2002
E Romanus; C Groß; Gunnar Glöckl; P Weber; Werner Weitschies
The measurement of the magnetic field-induced transient birefringence was investigated as a novel technique for the monitoring of biological binding reactions. First, a measurement system was set up and tested towards the detection of magnetic nanoparticles (MNP) with different hydrodynamic diameters. Then, the applicability of magnetic field-induced transient birefringence measurements for the detection of biological binding reactions was investigated. MNP conjugated with an antibody against human IgM (hIgM) were used as model probes. The magnetically marked antibodies were incubated with different amounts of IgM. It was found that the mean relaxation time and hence the size of the magnetic probes increase with increasing amounts of added IgM.
International Journal of Pharmaceutics | 2014
Lisa Wilde; Mona Bock; Gunnar Glöckl; Grzegorz Garbacz; Werner Weitschies
The purpose of this work was to develop a new pressure-sensitive dosage form that breaks and releases its content in a fasted stomach at the predominant pressure at the pylorus. The content of the dosage form should be liquid so that the active pharmaceutical ingredient quickly reaches maximum absorption in the upper small intestine. For this purpose glyceryl tristearate capsules were developed, consisting of an extremely brittle shell, with a crushing behavior that can be controlled by modification of the shell thickness. The capsules were filled with a hydroxyethyl cellulose gel containing paracetamol. Dissolution testing using USP apparatus 2, performed for simulating the resting time in the stomach, did not show any release. Studies using a texture analyser showed a correlation between the glyceryl tristearate filling volume and the necessary force to break the capsule. Physiological conditions in dissolution testing, such as movement, pressure and discontinuous medium contact, were set in a stress test device and showed that the dosage forms did not break and release its pharmaceutical ingredient until a pressure of 300 mbar was applied which served as a threshold limit for physiological pressure occurring during gastric emptying of large solids.
Sensors | 2009
Konstanze Aurich; Gunnar Glöckl; Stefan Nagel; Werner Weitschies
Measurements of magneto-optical relaxation signals of magnetic nanoparticles functionalized with biomolecules are a novel biosensing tool. Upon transmission of a laser beam through a nanoparticle suspension in a pulsed magnetic field, the properties of the laser beam change. This can be detected by optical methods. Biomolecular binding events leading to aggregation of nanoparticles are ascertainable by calculating the relaxation time and from this, the hydrodynamic diameters of the involved particles from the optical signal. Interaction between insulin-like growth factor 1 (IGF-1) and its antibody was utilized for demonstration of the measurement setup applicability as an immunoassay. Furthermore, a formerly developed kinetic model was utilized in order to determine kinetic parameters of the interaction. Beside utilization of the method as an immunoassay it can be applied for the characterization of diverse magnetic nanoparticles regarding their size and size distribution.
European Journal of Pharmaceutics and Biopharmaceutics | 2014
Lisa Wilde; Mona Bock; Marieke Wolf; Gunnar Glöckl; Grzegorz Garbacz; Werner Weitschies
Pressure-sensitive dosage forms have been developed that are intended for pulsatile delivery of drugs to the proximal small intestine. The novel dosage forms are composed of insoluble shell and either a hard fat W32 or polyethylene glycol (PEG) 1000 core that are both liquidizing at body temperature. The release is triggered by predominant pressure waves such as contractions of the pylorus causing rupture of the shell and an immediate emptying of the liquefied filling containing the active ingredient. In consequence immediately after the trigger has been effective the total amount of the drug is intended to be available for absorption in the upper small intestine. Both core types were coated with a cellulose acetate film that creates a pressure-sensitive shell in which mechanical resistance is depending on the coating thickness. Results of the texture analysis confirmed a correlation between the polymer load of the coating and the mechanical resistance. The dissolution test performed under conditions of physiological meaningful mechanical stress showed that the drug release is triggered by pressure waves of ⩾300 mbar which are representing the maximal pressure occurring during the gastric emptying.