Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guofeng Shen is active.

Publication


Featured researches published by Guofeng Shen.


Environmental Science & Technology | 2013

Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions.

Huizhong Shen; Ye Huang; Rong Wang; Dan Zhu; Wei Li; Guofeng Shen; Bin Wang; Yanyan Zhang; Yuanchen Chen; Yan Lu; Han Chen; Tongchao Li; Kang Sun; Bengang Li; Wenxin Liu; Junfeng Liu; Shu Tao

Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios.


Environmental Science & Technology | 2010

Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China

Guofeng Shen; Yifeng Yang; Wei Wang; Shu Tao; Chen Zhu; Yujia Min; Miao Xue; Junnan Ding; Bin Wang; Rong Wang; Huizhong Shen; Wei Li; Xilong Wang; Armistead G. Russell

Both particulate matter (PM) and black carbon (BC) impact climate change and human health. Uncertainties in emission inventories of PM and BC are partially due to large variation of measured emission factors (EFs) and lack of EFs from developing countries. Although there is a debate whether thermal-optically measured elemental carbon (EC) may be referred to as BC, EC is often treated as the same mass of BC. In this study, EFs of PM (EF(PM)) and EC (EF(EC)) for 9 crop residues and 5 coals were measured in actual rural cooking and coal stoves using the carbon mass balance method. The dependence of the EFs on fuel properties and combustion conditions was investigated. It was found that the mean EF(PM) were 8.19 ± 4.27 and 3.17 ± 4.67 g/kg and the mean EF(EC) were 1.38 ± 0.70 and 0.23 ± 0.36 g/kg for crop residues and coals, respectively. PM with size less than 10 μm (PM(10)) from crop residues were dominated by particles of aerodynamic size ranging from 0.7 to 2.1 μm, while the most abundant size ranges of PM(10) from coals were either from 0.7 to 2.1 μm or less than 0.7 μm. Of various fuel properties and combustion conditions tested, fuel moisture and modified combustion efficiency (MCE) were the most critical factors affecting EF(PM) and EF(EC) for crop residues. For coal combustion, EF(PM) were primarily affected by MCE and volatile matter, whereas EF(EC) were significantly influenced by ash content, volatile matter, heat value, and MCE. It was also found that EC emissions were significantly correlated with emissions of PM with size less than 0.4 μm.


Environmental Science & Technology | 2012

Black carbon emissions in China from 1949 to 2050.

Rong Wang; Shu Tao; Wentao Wang; Junfeng Liu; Huizhong Shen; Guofeng Shen; Bin Wang; Xiaopeng Liu; Wei Li; Ye Huang; Yanyan Zhang; Yan Lu; Han Chen; Yuanchen Chen; Chen Wang; Dan Zhu; Xilong Wang; Bengang Li; Wenxin Liu; Jianmin Ma

Black carbon (BC) emissions from China are of global concern. A new BC emission inventory (PKU-BC(China)) has been developed with the following improvements: (1) The emission factor database was updated; (2) a 0.1° × 0.1° gridded map was produced for 2007 based on county-level proxies; (3) time trends were derived for 1949-2007 and predicted for 2008-2050; and (4) the uncertainties associated with the inventory were quantified. It was estimated that 1957 Gg of BC were emitted in China in 2007, which is greater than previously reported. Residential coal combustion was the largest source, followed by residential biofuel burning, coke production, diesel vehicles, and brick kilns. By using a county-level disaggregation method, spatial bias in province-level disaggregation, mainly due to uneven per capita emissions within provinces, was reduced by 42.5%. Emissions increased steadily since 1949 until leveling off in the mid-1990s, due to a series of technological advances and to socioeconomic progress. BC emissions in China in 2050 are predicted to be 920-2183 Gg/yr under various scenarios; and the industrial and transportation sectors stand to benefit the most from technological improvements.


Environmental Science & Technology | 2011

Emissions of PAHs from Indoor Crop Residue Burning in a Typical Rural Stove: Emission Factors, Size Distributions, and Gas—Particle Partitioning

Guofeng Shen; Wei Wang; Yifeng Yang; Junnan Ding; Miao Xue; Yujia Min; Chen Zhu; Huizhong Shen; Wei Li; Bin Wang; Rong Wang; Xilong Wang; Shu Tao; Armistead G. Russell

Indoor combustion of crop residues for cooking or heating is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in developing countries. However, data on PAH emission factors (EFs) for burning crop residues indoor, particularly those measured in the field, were scarce, leading to large uncertainties in the emission inventories. In this study, EFs of PAHs for nine commonly used crop residues burned in a typical Chinese rural cooking stove were measured in a simulated kitchen. The measured EFs of total PAHs averaged at 63 ± 37 mg/kg, ranging from 27 to 142 mg/kg, which were higher than those measured in chamber experiments, implying that the laboratory experiment-based emission and risk assessment should be carefully reviewed. EFs of gaseous and particulate phase PAHs were 27 ± 13 and 35 ± 23 mg/kg, respectively. Composition profiles and isomer ratios of emitted PAHs were characterized. Stepwise regressions found that modified combustion efficiency and fuel moisture were the most important factors affecting the emissions. There was 80 ± 6% of PAHs associated with PM2.5, and the mass percentage of PAHs in fine particles increased as the molecular weight increased. For freshly emitted PAHs, absorption into organic carbon, rather than adsorption, dominated the gas-particle partitioning.


Environmental Pollution | 2012

Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural Chinese home through biomass fuelled cooking.

Junnan Ding; Junjun Zhong; Yifeng Yang; Bengang Li; Guofeng Shen; Yu-Hong Su; Chen Wang; Wei Li; Huizhong Shen; Bin Wang; Rong Wang; Ye Huang; Yanyan Zhang; Hongying Cao; Ying Zhu; Staci L. Massey Simonich; Shu Tao

The concentration and composition of PAHs emitted from biomass cooking fuel were characterized in a rural non-smoking household in northern China. Twenty-two parent PAHs (pPAHs), 12 nitro-PAHs (nPAHs), and 4 oxy-PAHs (oPAHs) were measured in the kitchen, bedroom, and outdoors during both summer and winter. The most severe contamination occurred in the kitchen in the winter, where the daily mean concentrations of pPAHs, nPAHs, and oPAHs were 7500 ± 4100, 38 ± 29, and 8400 ± 9200 ng/m(3), respectively. Our results suggest that the nPAHs were largely from secondary formation in ambient air while oPAHs were either from primary emission of biomass burning or secondary formation from pPAHs in the kitchen. The daily mean benzo(a)pyrene equivalent exposure concentration was as high as 200 ± 160 ng/m(3) in the winter for the housewife who did the cooking compared to 59 ± 37 ng/m(3) for the control group that did not cook.


Environmental Science & Technology | 2012

Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China

Guofeng Shen; Shu Tao; Siye Wei; Yanyan Zhang; Rong Wang; Bin Wang; Wei Li; Huizhong Shen; Ye Huang; Yuanchen Chen; Han Chen; Yifeng Yang; Wei Wang; Xilong Wang; Wenxin Liu; Staci L. Massey Simonich

Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study, the EFs of 28 pPAHs (EF(PAH28)), 9 nPAHs (EF(PAHn9)), and 4 oPAHs (EF(PAHo4)) were measured for residential combustion of 27 wood fuels in rural China. The measured EF(PAH28), EF(PAHn9), and EF(PAHo4) for brushwood were 86.7 ± 67.6, 3.22 ± 1.95 × 10(-2), and 5.56 ± 4.32 mg/kg, which were significantly higher than 12.7 ± 7.0, 8.27 ± 5.51 × 10(-3), and 1.19 ± 1.87 mg/kg for fuel wood combustion (p < 0.05). Sixteen U.S. EPA priority pPAHs contributed approximately 95% of the total of the 28 pPAHs measured. EFs of pPAHs, nPAHs, and oPAHs were positively correlated with one another. Measured EFs varied obviously depending on fuel properties and combustion conditions. The EFs of pPAHs, nPAHs, and oPAHs were significantly correlated with modified combustion efficiency and fuel moisture. Nitro-naphthalene and 9-fluorenone were the most abundant nPAHs and oPAHs identified. Both nPAHs and oPAHs showed relatively high tendencies to be present in the particulate phase than pPAHs due to their lower vapor pressures. The gas-particle partitioning of freshly emitted pPAHs, nPAHs, and oPAHs was primarily controlled by organic carbon absorption.


Environmental Science & Technology | 2013

Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy- Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China

Guofeng Shen; Shu Tao; Siye Wei; Yuanchen Chen; Yanyan Zhang; Huizhong Shen; Ye Huang; Dan Zhu; Chenyi Yuan; Haochen Wang; Yafei Wang; Lijun Pei; Yilan Liao; Yonghong Duan; Bin Wang; Rong Wang; Yan Lv; Wei Li; Xilong Wang; Xiaoying Zheng

Air pollutants from residential solid fuel combustion are attracting growing public concern. Field measured emission factors (EFs) of various air pollutants for solid fuels are close to the reality and urgently needed for better emission estimations. In this study, emission factors of particulate matter (PM), organic carbon (OC), elemental carbon (EC), and various polycyclic aromatic hydrocarbons (PAHs) from residential combustions of coal briquette, coal cake, and wood were measured in rural Heshun County, China. The measured EFs of PM, OC, and EC were 8.1-8.5, 2.2-3.6, 0.91-1.6 g/kg for the wood burnt in a simple metal stove, 0.54-0.64, 0.13-0.14, 0.040-0.0041 g/kg for the briquette burned in an improved stove with a chimney, and 3.2-8.5, 0.38-0.58, 0.022-0.052 g/kg for the homemade coal cake combusted in a brick stove with a flue, respectively. EFs of 28 parent PAHs, 4 oxygenated PAHs, and 9 nitro-PAHs were 182-297, 7.8-10, 0.14-0.55 mg/kg for the wood, 14-16, 1.7-2.6, 0.64-0.83 mg/kg for the briquette, and 168-223, 4.7-9.5, 0.16-2.4 mg/kg for the coal cake, respectively. Emissions from the wood and coal cake combustions were much higher than those for the coal briquette, especially true for high molecular weight PAHs. Most EFs measured in the field were higher than those measured in stove combustions under laboratory conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Exposure to ambient black carbon derived from a unique inventory and high-resolution model

Rong Wang; Shu Tao; Yves Balkanski; Philippe Ciais; Olivier Boucher; Junfeng Liu; Shilong Piao; Huizhong Shen; Maria Raffaella Vuolo; Myrto Valari; Han Y. H. Chen; Yuanchen Chen; Anne Cozic; Ye Huang; Bengang Li; Wei Li; Guofeng Shen; Bin Wang; Yanyan Zhang

Significance In this study, we have developed a unique global black carbon (BC) emission inventory using a 10-km grid based on the latest source and emission factor information. The inventory is used to model BC concentrations using a global atmospheric aerosol climate model, with a high-resolution grid for Asia, to better resolve the exposure of populations to elevated BC concentration. The model with even higher resolution (10 km) is used for the North China Plain. Finally, the population exposure concentrations are evaluated. Black carbon (BC) is increasingly recognized as a significant air pollutant with harmful effects on human health, either in its own right or as a carrier of other chemicals. The adverse impact is of particular concern in those developing regions with high emissions and a growing population density. The results of recent studies indicate that BC emissions could be underestimated by a factor of 2–3 and this is particularly true for the hot-spot Asian region. Here we present a unique inventory at 10-km resolution based on a recently published global fuel consumption data product and updated emission factor measurements. The unique inventory is coupled to an Asia-nested (∼50 km) atmospheric model and used to calculate the global population exposure to BC with fully quantified uncertainty. Evaluating the modeled surface BC concentrations against observations reveals great improvement. The bias is reduced from −88% to −35% in Asia when the unique inventory and higher-resolution model replace a previous inventory combined with a coarse-resolution model. The bias can be further reduced to −12% by downscaling to 10 km using emission as a proxy. Our estimated global population-weighted BC exposure concentration constrained by observations is 2.14 μg⋅m−3; 130% higher than that obtained using less detailed inventories and low-resolution models.


Environmental Science & Technology | 2011

Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Indoor Solid Fuel Combustion

Guofeng Shen; Shu Tao; Wei Wang; Yifeng Yang; Junnan Ding; Miao Xue; Yujia Min; Chen Zhu; Huizhong Shen; Wei Li; Bin Wang; Rong Wang; Wentao Wang; Xilong Wang; Armistead G. Russell

Indoor solid fuel combustion is a dominant source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) and the latter are believed to be more toxic than the former. However, there is limited quantitative information on the emissions of OPAHs from solid fuel combustion. In this study, emission factors of OPAHs (EF(OPAH)) for nine commonly used crop residues and five coals burnt in typical residential stoves widely used in rural China were measured under simulated kitchen conditions. The total EF(OPAH) ranged from 2.8 ± 0.2 to 8.1 ± 2.2 mg/kg for tested crop residues and from 0.043 to 71 mg/kg for various coals and 9-fluorenone was the most abundant specie. The EF(OPAH) for indoor crop residue burning were 1-2 orders of magnitude higher than those from open burning, and they were affected by fuel properties and combustion conditions, like moisture and combustion efficiency. For both crop residues and coals, significantly positive correlations were found between EFs for the individual OPAHs and the parent PAHs. An oxygenation rate, R(o), was defined as the ratio of the EFs between the oxygenated and parent PAH species to describe the formation potential of OPAHs. For the studied OPAH/PAH pairs, mean R(o) values were 0.16-0.89 for crop residues and 0.03-0.25 for coals. R(o) for crop residues burned in the cooking stove were much higher than those for open burning and much lower than those in ambient air, indicating the influence of secondary formation of OPAH and loss of PAHs. In comparison with parent PAHs, OPAHs showed a higher tendency to be associated with particulate matter (PM), especially fine PM, and the dominate size ranges were 0.7-2.1 μm for crop residues and high caking coals and <0.7 μm for the tested low caking briquettes.


Environmental Science & Technology | 2012

Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

Guofeng Shen; Shu Tao; Siye Wei; Yinsong Zhang; Rong Wang; Baolin Wang; Wei Li; Huizhong Shen; Yao Huang; Chen Y; Han Y. H. Chen; Yu Yang; Wei Wang; Wen Wei; Wang X; Wen-Xiu Liu; Masse Simonich Sl

Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EF(PAH) were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.

Collaboration


Dive into the Guofeng Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuanchen Chen

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Wang

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge