Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guolan Lu is active.

Publication


Featured researches published by Guolan Lu.


Journal of Biomedical Optics | 2014

Medical hyperspectral imaging: a review

Guolan Lu; Baowei Fei

Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.


Journal of Biomedical Optics | 2014

Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging

Guolan Lu; Luma V. Halig; Dongsheng Wang; Xulei Qin; Zhuo Georgia Chen; Baowei Fei

Abstract. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. Hyperspectral imaging (HSI) has emerged as a powerful tool for noninvasive cancer detection and diagnosis, with the advantage of avoiding tissue biopsy and providing diagnostic signatures without the need of a contrast agent in real time. We developed a spectral-spatial classification method to distinguish cancer from normal tissue on hyperspectral images. We acquire hyperspectral reflectance images from 450 to 900 nm with a 2-nm increment from tumor-bearing mice. In our animal experiments, the HSI and classification method achieved a sensitivity of 93.7% and a specificity of 91.3%. The preliminary study demonstrated that HSI has the potential to be applied in vivo for noninvasive detection of tumors.


IEEE Transactions on Biomedical Engineering | 2016

A Minimum Spanning Forest-Based Method for Noninvasive Cancer Detection With Hyperspectral Imaging

Robert Pike; Guolan Lu; Dongsheng Wang; Zhuo Georgia Chen; Baowei Fei

Goal: The purpose of this paper is to develop a classification method that combines both spectral and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an animal model. Methods: An automated algorithm based on a minimum spanning forest (MSF) and optimal band selection has been proposed to classify healthy and cancerous tissue on hyperspectral images. A support vector machine classifier is trained to create a pixel-wise classification probability map of cancerous and healthy tissue. This map is then used to identify markers that are used to compute mutual information for a range of bands in the hyperspectral image and thus select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral information. Conclusion: The MSF based method with automatically selected bands proved to be accurate in determining the tumor boundary on hyperspectral images. Significance: Hyperspectral imaging combined with the proposed classification technique has the potential to provide a noninvasive tool for cancer detection.


Journal of Biomedical Optics | 2015

Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery

Guolan Lu; Dongsheng Wang; Xulei Qin; Luma V. Halig; Susan Muller; Hongzheng Zhang; Amy Y. Chen; Brian W. Pogue; Zhuo Georgia Chen; Baowei Fei

Abstract. Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.


Proceedings of SPIE--the International Society for Optical Engineering | 2014

Hyperspectral Imaging for Cancer Surgical Margin Delineation: Registration of Hyperspectral and Histological Images

Guolan Lu; Luma V. Halig; Dongsheng Wang; Zhuo Georgia Chen; Baowei Fei

The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection.


Journal of Biomedical Optics | 2017

Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging

Martin Halicek; Guolan Lu; James V. Little; Xu Wang; Mihir Patel; Christopher C. Griffith; Mark W. El-Deiry; Amy Y. Chen; Baowei Fei

Abstract. Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients.


Proceedings of SPIE | 2014

Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

Guolan Lu; Luma V. Halig; Dongsheng Wang; Zhuo Georgia Chen; Baowei Fei

As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.


Proceedings of SPIE | 2014

A Minimum Spanning Forest Based Hyperspectral Image Classification Method for Cancerous Tissue Detection

Robert Pike; Samuel K. Patton; Guolan Lu; Luma V. Halig; Dongsheng Wang; Zhuo Georgia Chen; Baowei Fei

Hyperspectral imaging is a developing modality for cancer detection. The rich information associated with hyperspectral images allow for the examination between cancerous and healthy tissue. This study focuses on a new method that incorporates support vector machines into a minimum spanning forest algorithm for differentiating cancerous tissue from normal tissue. Spectral information was gathered to test the algorithm. Animal experiments were performed and hyperspectral images were acquired from tumor-bearing mice. In vivo imaging experimental results demonstrate the applicability of the proposed classification method for cancer tissue classification on hyperspectral images.


Proceedings of SPIE | 2016

Hyperspectral imaging of neoplastic progression in a mouse model of oral carcinogenesis

Guolan Lu; Xulei Qin; Dongsheng Wang; Susan Muller; Hongzheng Zhang; Amy Y. Chen; Zhuo Georgia Chen; Baowei Fei

Hyperspectral imaging (HSI) is an emerging modality for medical applications and holds great potential for noninvasive early detection of cancer. It has been reported that early cancer detection can improve the survival and quality of life of head and neck cancer patients. In this paper, we explored the possibility of differentiating between premalignant lesions and healthy tongue tissue using hyperspectral imaging in a chemical induced oral cancer animal model. We proposed a novel classification algorithm for cancer detection using hyperspectral images. The method detected the dysplastic tissue with an average area under the curve (AUC) of 0.89. The hyperspectral imaging and classification technique may provide a new tool for oral cancer detection.


Clinical Cancer Research | 2017

Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging

Guolan Lu; James V. Little; Xu Wang; Hongzheng Zhang; Mihir Patel; Christopher C. Griffith; Mark W. El-Deiry; Amy Y. Chen; Baowei Fei

Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR.

Collaboration


Dive into the Guolan Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge