Patricia Monteiro
McGovern Institute for Brain Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia Monteiro.
Science | 2013
Eric Burguière; Patricia Monteiro; Guoping Feng; Ann M. Graybiel
What Causes Obsessive Compulsive Disorder? Obsessive compulsive disorder is a severe, chronic mental illness that affects millions of individuals. However, the mechanisms underlying this disease are still largely unknown (see the Perspective by Rauch and Carlezon Jr.). Ahmari et al. (p. 1234) stimulated glutamatergic pathways between the orbitofrontal cortex and the ventromedial striatum and used grooming to assess obsessive compulsive behavior in mice. Repetitive stimulation over days triggered changes in the neuronal responses of the ventromedial striatum. Over time, the behavior of the animals became independent of stimulation and could be prevented by the antidepressant fluoxetine. Burguière et al. (p. 1243) investigated the neural basis of obsessive compulsive symptoms in a mutant mouse that showed excessive expression of a conditioned form of grooming. Normal behavior can be rescued in a mouse model of obsessive-compulsive disorder. [Also see Perspective by Rauch and Carlezon] Dysfunctions in frontostriatal brain circuits have been implicated in neuropsychiatric disorders, including those characterized by the presence of repetitive behaviors. We developed an optogenetic approach to block repetitive, compulsive behavior in a mouse model in which deletion of the synaptic scaffolding gene, Sapap3, results in excessive grooming. With a delay-conditioning task, we identified in the mutants a selective deficit in behavioral response inhibition and found this to be associated with defective down-regulation of striatal projection neuron activity. Focused optogenetic stimulation of the lateral orbitofrontal cortex and its terminals in the striatum restored the behavioral response inhibition, restored the defective down-regulation, and compensated for impaired fast-spiking neuron striatal microcircuits. These findings raise promising potential for the design of targeted therapy for disorders involving excessive repetitive behavior.
Neuron | 2016
Yang Zhou; Tobias Kaiser; Patricia Monteiro; Xiangyu Zhang; Marie. S. Van der Goes; Dongqing Wang; Boaz Barak; Menglong Zeng; Chenchen Li; Congyi Lu; Michael F. Wells; Aldo Amaya; Shannon Nguyen; Michael C. Lewis; Neville E. Sanjana; Yongdi Zhou; Mingjie Zhang; Feng Zhang; Zhanyan Fu; Guoping Feng
Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.
Nature Reviews Neuroscience | 2017
Patricia Monteiro; Guoping Feng
Several large-scale genomic studies have supported an association between cases of autism spectrum disorder and mutations in the genes SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2 and SHANK3, which encode a family of postsynaptic scaffolding proteins that are present at glutamatergic synapses in the CNS. An evaluation of human genetic data, as well as of in vitro and in vivo animal model data, may allow us to understand how disruption of SHANK scaffolding proteins affects the structure and function of neural circuits and alters behaviour.
Current Opinion in Neurobiology | 2015
Eric Burguière; Patricia Monteiro; Luc Mallet; Guoping Feng; Ann M. Graybiel
Increasing evidence implicates abnormalities in corticostriatal circuits in the pathophysiology of obsessive-compulsive disorder (OCD) and OC-spectrum disorders. Parallels between the emergence of repetitive, compulsive behaviors and the acquisition of automated behaviors suggest that the expression of compulsions could in part involve loss of control of such habitual behaviors. The view that striatal circuit dysfunction is involved in OC-spectrum disorders is strengthened by imaging and other evidence in humans, by discovery of genes related to OCD syndromes, and by functional studies in animal models of these disorders. We highlight this growing concordance of work in genetics and neurobiology suggesting that frontostriatal circuits, and their links with basal ganglia, thalamus and brainstem, are promising candidates for therapeutic intervention in OCD.
The Journal of Neuroscience | 2012
João Gomes; João T. Costa; Carlos V. Melo; Federico Felizzi; Patricia Monteiro; Maria J. Pinto; Ana R. Inácio; Tadeusz Wieloch; Ramiro D. Almeida; Mário Grãos; Carlos B. Duarte
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival through activation of TrkB receptors. The trkB gene encodes a full-length receptor tyrosine kinase (TrkB.FL) and its truncated (T1/T2) isoforms. We investigated the changes in TrkB protein levels and signaling activity under excitotoxic conditions, which are characteristic of brain ischemia, traumatic brain injury, and neurodegenerative disorders. Excitotoxic stimulation of cultured rat hippocampal or striatal neurons downregulated TrkB.FL and upregulated a truncated form of the receptor (TrkB.T). Downregulation of TrkB.FL was mediated by calpains, whereas the increase in TrkB.T protein levels required transcription and translation activities. Downregulation of TrkB.FL receptors in hippocampal neurons correlated with a decrease in BDNF-induced activation of the Ras/ERK and PLCγ pathways. However, calpain inhibition, which prevents TrkB.FL degradation, did not preclude the decrease in signaling activity of these receptors. On the other hand, incubation with anisomycin, to prevent the upregulation of TrkB.T, protected to a large extent the TrkB.FL signaling activity, suggesting that truncated receptors may act as dominant-negatives. The upregulation of TrkB.T under excitotoxic conditions was correlated with an increase in BDNF-induced inhibition of RhoA, a mediator of excitotoxic neuronal death. BDNF fully protected hippocampal neurons transduced with TrkB.T when present during excitotoxic stimulation with glutamate, in contrast with the partial protection observed in cells overexpressing TrkB.FL or expressing GFP. These results indicate that BDNF protects hippocampal neurons by two distinct mechanisms: through the neurotrophic effects of TrkB.FL receptors and by activation of TrkB.T receptors coupled to inhibition of the excitotoxic signaling.
Biological Psychiatry | 2016
Patricia Monteiro; Guoping Feng
Obsessive-compulsive disorder (OCD) affects 2%-3% of the population worldwide and can cause significant distress and disability. Substantial challenges remain in the field of OCD research and therapeutics. Approved interventions alleviate symptoms only partially, with 30%-40% of patients being resistant to treatment. Although the etiology of OCD is still unknown, research evidence points toward the involvement of cortico-striato-thalamocortical circuitry. This review focuses on the most recent behavioral, genetics, and neurophysiologic findings from animal models of OCD. Based on evidence from these models and parallels with human studies, we discuss the circuit hyperactivity hypothesis for OCD, a potential circuitry dysfunction of action termination, and the involvement of candidate genes. Adding a more biologically valid framework to OCD will help researchers define and test new hypotheses and facilitate the development of targeted therapies based on disease-specific mechanisms.
The Journal of Neuroscience | 2016
Qiangge Zhang; Xian Gao; Chenchen Li; Catia Feliciano; Dongqing Wang; Dingxi Zhou; Yuan Mei; Patricia Monteiro; Michelle Anand; Shigeyoshi Itohara; Xiao-Wei Dong; Zhanyan Fu; Guoping Feng
Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability.
Neuroscience | 2016
T. Kaiser; J.T. Ting; Patricia Monteiro; Guoping Feng
Parvalbumin (PVALB)-expressing fast-spiking interneurons subserve important roles in many brain regions by modulating circuit function and dysfunction of these neurons is strongly implicated in neuropsychiatric disorders including schizophrenia and autism. To facilitate the study of PVALB neuron function we need to be able to identify PVALB neurons in vivo. We have generated a bacterial artificial chromosome (BAC) transgenic mouse line expressing the red fluorophore tdTomato under the control of endogenous regulatory elements of the Pvalb gene locus (JAX # 027395). We show that the tdTomato transgene is faithfully expressed relative to endogenous PVALB expression throughout the brain. Furthermore, targeted patch clamp recordings confirm that the labeled populations in neocortex, striatum, and hippocampus are fast-spiking interneurons based on intrinsic properties. This new transgenic mouse line provides a useful tool to study PVALB neuron function in the normal brain as well as in mouse models of psychiatric disease.
The Journal of Physiology | 2018
Patricia Monteiro; Boaz Barak; Yang Zhou; Rebecca McRae; Diana Alexandra Ferreira Rodrigues; Ian R. Wickersham; Guoping Feng
There are two electrophysiological dichotomous populations of parvalbumin (PV) interneurons located in the dorsal striatum. Striatal PV interneurons in medial and lateral regions differ significantly in their intrinsic excitability. Parvalbumin interneurons in the dorsomedial striatum, but not in the dorsolateral striatum, receive afferent glutamatergic input from cingulate cortex.
The Journal of Physiology | 2018
Patricia Monteiro; Boaz Barak; Yang Zhou; Rebecca McRae; Diana Alexandra Ferreira Rodrigues; Ian R. Wickersham; Guoping Feng