Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guosheng Xiong is active.

Publication


Featured researches published by Guosheng Xiong.


Nature | 2003

Control of tillering in rice

Xueyong Li; Qian Qian; Zhiming Fu; Yonghong Wang; Guosheng Xiong; Dali Zeng; Xiaoqun Wang; Xinfang Liu; Sheng Teng; Fujimoto Hiroshi; Ming Yuan; Da Luo; Bin Han; Jiayang Li

Tillering in rice (Oryza sativa L.) is an important agronomic trait for grain production, and also a model system for the study of branching in monocotyledonous plants. Rice tiller is a specialized grain-bearing branch that is formed on the unelongated basal internode and grows independently of the mother stem (culm) by means of its own adventitious roots. Rice tillering occurs in a two-stage process: the formation of an axillary bud at each leaf axil and its subsequent outgrowth. Although the morphology and histology and some mutants of rice tillering have been well described, the molecular mechanism of rice tillering remains to be elucidated. Here we report the isolation and characterization of MONOCULM 1 (MOC1), a gene that is important in the control of rice tillering. The moc1 mutant plants have only a main culm without any tillers owing to a defect in the formation of tiller buds. MOC1 encodes a putative GRAS family nuclear protein that is expressed mainly in the axillary buds and functions to initiate axillary buds and to promote their outgrowth.


Nature | 2013

DWARF 53 acts as a repressor of strigolactone signalling in rice

Liang Jiang; Xue Liu; Guosheng Xiong; Huihui Liu; Fulu Chen; Lei Wang; Xiangbing Meng; Guifu Liu; Hong Yu; Yundong Yuan; Wei Yi; Li-Hua Zhao; Honglei Ma; Yuanzheng He; Zhongshan Wu; Karsten Melcher; Qian Qian; H. Eric Xu; Yonghong Wang; Jiayang Li

Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp–Cullin–F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14–D3 complex.


Nature Genetics | 2014

Genomic analyses provide insights into the history of tomato breeding

Tao Lin; Guangtao Zhu; Junhong Zhang; Xiangyang Xu; Qinghui Yu; Zheng Zheng; Zhonghua Zhang; Yaoyao Lun; Shuai Li; Xiaoxuan Wang; Zejun Huang; Junming Li; Chunzhi Zhang; Taotao Wang; Yuyang Zhang; Aoxue Wang; Yan-Cong Zhang; Kui Lin; Chuanyou Li; Guosheng Xiong; Yongbiao Xue; Andrea Mazzucato; Mathilde Causse; Zhangjun Fei; James J. Giovannoni; Roger T. Chetelat; Dani Zamir; Thomas Städler; Jingfu Li; Zhibiao Ye

The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit ∼100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.


Nature Genetics | 2015

Copy number variation at the GL7 locus contributes to grain size diversity in rice

Yuexing Wang; Guosheng Xiong; Jiang Hu; Liang Jiang; Hong Yu; Jie Xu; Yunxia Fang; Longjun Zeng; Erbo Xu; Jing Xu; Weijun Ye; Xiangbing Meng; Ruifang Liu; Hongqi Chen; Yanhui Jing; Yonghong Wang; Xudong Zhu; Jiayang Li; Qian Qian

Copy number variants (CNVs) are associated with changes in gene expression levels and contribute to various adaptive traits. Here we show that a CNV at the Grain Length on Chromosome 7 (GL7) locus contributes to grain size diversity in rice (Oryza sativa L.). GL7 encodes a protein homologous to Arabidopsis thaliana LONGIFOLIA proteins, which regulate longitudinal cell elongation. Tandem duplication of a 17.1-kb segment at the GL7 locus leads to upregulation of GL7 and downregulation of its nearby negative regulator, resulting in an increase in grain length and improvement of grain appearance quality. Sequence analysis indicates that allelic variants of GL7 and its negative regulator are associated with grain size diversity and that the CNV at the GL7 locus was selected for and used in breeding. Our work suggests that pyramiding beneficial alleles of GL7 and other yield- and quality-related genes may improve the breeding of elite rice varieties.


The Plant Cell | 2013

Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture

Zefu Lu; Hong Yu; Guosheng Xiong; Jing Wang; Yongqing Jiao; Guifu Liu; Yanhui Jing; Xiangbing Meng; Xingming Hu; Qian Qian; Xiangdong Fu; Yonghong Wang; Jiayang Li

This work shows that the key rice architecture regulator IPA1 binds to promoters of target genes directly or indirectly at a different motif by interacting with PCF1 and PCF2. Expression profiling and further characterization of these target genes reveal a complex genetic regulatory network orchestrated by IPA1, providing insight into the regulation of plant development. IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.


Molecular Plant | 2015

A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice

Jiang Hu; Yuexing Wang; Yunxia Fang; Longjun Zeng; Jie Xu; Haiping Yu; Zhenyuan Shi; Jiangjie Pan; Dong Zhang; Shujing Kang; Li Zhu; Guojun Dong; Longbiao Guo; Dali Zeng; Guangheng Zhang; Lihong Xie; Guosheng Xiong; Jiayang Li; Qian Qian

Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.


Nature Communications | 2012

Degradation of monoCuLm 1 by APC/C TAD1 regulates rice tillering

Cao Xu; Yonghong Wang; Yanchun Yu; Jingbo Duan; Zhigang Liao; Guosheng Xiong; Xiangbing Meng; Guifu Liu; Qian Qian; Jiayang Li

A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis

Bing Wang; Jinfang Chu; Tianying Yu; Qian Xu; Xiaohong Sun; Jia Yuan; Guosheng Xiong; Guodong Wang; Yonghong Wang; Jiayang Li

Significance The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development. IAA can be synthesized through the precursor tryptophan (Trp), known as the Trp-dependent IAA biosynthetic pathway. However, IAA may also be synthesized through a proposed Trp-independent IAA biosynthetic pathway. Although the Trp-independent IAA biosynthesis was hypothesized 20 years ago, it remains a mystery. In this paper, we provide compelling evidence that the cytosol-localized indole synthase (INS) initiates the Trp-independent IAA biosynthetic pathway and that the spatial and temporal expression of INS plays an important role in the establishment of the apical–basal pattern during early embryogenesis, demonstrating that the Trp-dependent and -independent IAA biosynthetic pathways coordinately regulate embryogenesis of higher plants. The phytohormone auxin regulates nearly all aspects of plant growth and development. Tremendous achievements have been made in elucidating the tryptophan (Trp)-dependent auxin biosynthetic pathway; however, the genetic evidence, key components, and functions of the Trp-independent pathway remain elusive. Here we report that the Arabidopsis indole synthase mutant is defective in the long-anticipated Trp-independent auxin biosynthetic pathway and that auxin synthesized through this spatially and temporally regulated pathway contributes significantly to the establishment of the apical–basal axis, which profoundly affects the early embryogenesis in Arabidopsis. These discoveries pave an avenue for elucidating the Trp-independent auxin biosynthetic pathway and its functions in regulating plant growth and development.


Journal of Genetics and Genomics | 2015

MONOCULM 3, an Ortholog of WUSCHEL in Rice, Is Required for Tiller Bud Formation

Zefu Lu; Gaoneng Shao; Jinsong Xiong; Yongqing Jiao; Jing Wang; Guifu Liu; Xiangbing Meng; Yan Liang; Guosheng Xiong; Yonghong Wang; Jiayang Li

WUSCHEL (WUS) plays an essential role for the maintenance of meristem activity in dicots, but its function is still elusive in monocots. We isolated a new monoculm mutant, monoculm 3 (moc3), in which a point mutation causes the premature termination of rice O. sativa WUS (OsWUS). Morphological observation revealed that the formation of tiller buds was disrupted in moc3. MOC3 was localized in the nuclear and could interact with TOPLESS-RELATED PROTEINS (TPRs). The expression of MOC3 was induced by cytokinins and defection of MOC3 affected the expression of several two-component cytokinin response regulators, OsRRs and ORRs. Our results suggest that MOC3 is required for the formation of axillary buds and has a complex relationship with cytokinins.


Cell Research | 2015

Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species.

Jian Wu; Yuefeng Sun; Yannan Zhao; Jian Zhang; Lilan Luo; Meng Li; Jinlong Wang; Hong Yu; Guifu Liu; Liusha Yang; Guosheng Xiong; Jian-Min Zhou; Jianru Zuo; Yonghong Wang; Jiayang Li

Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.

Collaboration


Dive into the Guosheng Xiong's collaboration.

Top Co-Authors

Avatar

Jiayang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yonghong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guifu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangbing Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zefu Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge