Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangbing Meng is active.

Publication


Featured researches published by Xiangbing Meng.


The Plant Cell | 2009

DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth

Hao Lin; Renxiao Wang; Qian Qian; Meixian Yan; Xiangbing Meng; Zhiming Fu; Cunyu Yan; Biao Jiang; Zhen Su; Jiayang Li; Yonghong Wang

Tillering in rice (Oryza sativa) is one of the most important agronomic traits that determine grain yields. Previous studies on rice tillering mutants have shown that the outgrowth of tiller buds in rice is regulated by a carotenoid-derived MAX/RMS/D (more axillary branching) pathway, which may be conserved in higher plants. Strigolactones, a group of terpenoid lactones, have been recently identified as products of the MAX/RMS/D pathway that inhibits axillary bud outgrowth. We report here the molecular genetic characterization of d27, a classic rice mutant exhibiting increased tillers and reduced plant height. D27 encodes a novel iron-containing protein that localizes in chloroplasts and is expressed mainly in vascular cells of shoots and roots. The phenotype of d27 is correlated with enhanced polar auxin transport. The phenotypes of the d27 d10 double mutant are similar to those of d10, a mutant defective in the ortholog of MAX4/RMS1 in rice. In addition, 2′-epi-5-deoxystrigol, an identified strigolactone in root exudates of rice seedlings, was undetectable in d27, and the phenotypes of d27 could be rescued by supplementation with GR24, a synthetic strigolactone analog. Our results demonstrate that D27 is involved in the MAX/RMS/D pathway, in which D27 acts as a new member participating in the biosynthesis of strigolactones.


Nature | 2013

DWARF 53 acts as a repressor of strigolactone signalling in rice

Liang Jiang; Xue Liu; Guosheng Xiong; Huihui Liu; Fulu Chen; Lei Wang; Xiangbing Meng; Guifu Liu; Hong Yu; Yundong Yuan; Wei Yi; Li-Hua Zhao; Honglei Ma; Yuanzheng He; Zhongshan Wu; Karsten Melcher; Qian Qian; H. Eric Xu; Yonghong Wang; Jiayang Li

Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp–Cullin–F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14–D3 complex.


Nature Genetics | 2015

Copy number variation at the GL7 locus contributes to grain size diversity in rice

Yuexing Wang; Guosheng Xiong; Jiang Hu; Liang Jiang; Hong Yu; Jie Xu; Yunxia Fang; Longjun Zeng; Erbo Xu; Jing Xu; Weijun Ye; Xiangbing Meng; Ruifang Liu; Hongqi Chen; Yanhui Jing; Yonghong Wang; Xudong Zhu; Jiayang Li; Qian Qian

Copy number variants (CNVs) are associated with changes in gene expression levels and contribute to various adaptive traits. Here we show that a CNV at the Grain Length on Chromosome 7 (GL7) locus contributes to grain size diversity in rice (Oryza sativa L.). GL7 encodes a protein homologous to Arabidopsis thaliana LONGIFOLIA proteins, which regulate longitudinal cell elongation. Tandem duplication of a 17.1-kb segment at the GL7 locus leads to upregulation of GL7 and downregulation of its nearby negative regulator, resulting in an increase in grain length and improvement of grain appearance quality. Sequence analysis indicates that allelic variants of GL7 and its negative regulator are associated with grain size diversity and that the CNV at the GL7 locus was selected for and used in breeding. Our work suggests that pyramiding beneficial alleles of GL7 and other yield- and quality-related genes may improve the breeding of elite rice varieties.


Plant Journal | 2009

Short panicle1 encodes a putative PTR family transporter and determines rice panicle size

Shengben Li; Qian Qian; Zhiming Fu; Dali Zeng; Xiangbing Meng; Junko Kyozuka; Masahiko Maekawa; Xudong Zhu; Jian Zhang; Jiayang Li; Yonghong Wang

The architecture of the rice inflorescence, which is determined mainly by the number and length of primary and secondary inflorescence branches, is of importance in both agronomy and developmental biology. The position and number of primary branches are established during the phase transition from vegetative to reproductive growth, and several of the genes identified as participating in this process do so by regulating the meristemic activities of inflorescence. However, little is known about the molecular mechanism that controls inflorescence branch elongation. Here, we report on a novel rice mutant, short panicle1 (sp1), which is defective in rice panicle elongation, and thus leads to the short-panicle phenotype. Gene cloning and characterization indicate that SP1 encodes a putative transporter that belongs to the peptide transporter (PTR) family. This conclusion is based on the findings that SP1 contains a conserved PTR2 domain consisting of 12 transmembrane domains, and that the SP1-GFP fusion protein is localized in the plasma membrane. The SP1 gene is highly expressed in the phloem of the branches of young panicles, which is consistent with the predicted function of SP1 and the sp1 phenotype. Phylogenetic analysis implies that SP1 might be a nitrate transporter. However, neither nitrate transporter activity nor any other compounds transported by known PTR proteins could be detected in either a Xenopus oocyte or yeast system, in our study, suggesting that SP1 may need other component(s) to be able to function as a transporter, or that it transports unknown substrates in the monocotyledonous rice plant.


The Plant Cell | 2013

Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture

Zefu Lu; Hong Yu; Guosheng Xiong; Jing Wang; Yongqing Jiao; Guifu Liu; Yanhui Jing; Xiangbing Meng; Xingming Hu; Qian Qian; Xiangdong Fu; Yonghong Wang; Jiayang Li

This work shows that the key rice architecture regulator IPA1 binds to promoters of target genes directly or indirectly at a different motif by interacting with PCF1 and PCF2. Expression profiling and further characterization of these target genes reveal a complex genetic regulatory network orchestrated by IPA1, providing insight into the regulation of plant development. IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.


The Plant Cell | 2015

Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation

Lei Wang; Bing Wang; Liang Jiang; Xue Liu; Xilong Li; Zefu Lu; Xiangbing Meng; Yonghong Wang; Steven M. Smith; Jiayang Li

D53-like SMXLs regulate shoot branching and leaf development through the strigolactone signaling pathway by forming a complex with TPR2 and repressing transcription in Arabidopsis. Strigolactones (SLs) are carotenoid-derived phytohormones that control many aspects of plant development, including shoot branching, leaf shape, stem secondary thickening, and lateral root growth. In rice (Oryza sativa), SL signaling requires the degradation of DWARF53 (D53), mediated by a complex including D14 and D3, but in Arabidopsis thaliana, the components and mechanism of SL signaling involving the D3 ortholog MORE AXILLARY GROWTH2 (MAX2) are unknown. Here, we show that SL-dependent regulation of shoot branching in Arabidopsis requires three D53-like proteins, SUPPRESSOR OF MORE AXILLARY GROWTH2-LIKE6 (SMXL6), SMXL7, and SMXL8. The smxl6 smxl7 smxl8 triple mutant suppresses the highly branched phenotypes of max2 and the SL-deficient mutant max3. Overexpression of a mutant form of SMXL6 that is resistant to SL-induced ubiquitination and degradation enhances shoot branching. Exogenous application of the SL analog rac-GR24 causes ubiquitination and degradation of SMXL6, 7, and 8; this requires D14 and MAX2. D53-like SMXLs form complexes with MAX2 and TOPLESS-RELATED PROTEIN2 (TPR2) and interact with D14 in a GR24-responsive manner. Furthermore, D53-like SMXLs exhibit TPR2-dependent transcriptional repression activity and repress the expression of BRANCHED1. Our findings reveal that in Arabidopsis, D53-like SMXLs act with TPR2 to repress transcription and so allow lateral bud outgrowth but that SL-induced degradation of D53-like proteins activates transcription to inhibit outgrowth.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs

Catarina Cardoso; Yanxia Zhang; Muhammad Jamil; Jo Hepworth; Tatsiana Charnikhova; Stanley O. N. Dimkpa; Caroline Meharg; Mark H. Wright; Junwei Liu; Xiangbing Meng; Yonghong Wang; Jiayang Li; Susan R. McCouch; Ottoline Leyser; Adam H. Price; Harro J. Bouwmeester; Carolien Ruyter-Spira

Significance Strigolactones are a new class of plant hormones regulating plant shoot and root architecture in response to the environment. Also present in root exudates, strigolactones stimulate the germination of parasitic plant seeds. This report describes a genomic polymorphism—associated with the Indica/Japonica subspecies divide in rice that has a major impact on the biosynthesis of strigolactones, plant tillering, and germination of the parasitic plant Striga hermonthica—consisting of the deletion of two strigolactone biosynthetic genes orthologous to Arabidopsis MAX1. Both of these genes rescued the Arabidopsis max1-1 highly branched mutant phenotype and increased the strigolactone level when overexpressed in the Indica rice variety Bala. This finding is of great interest for plant physiologists, plant evolutionary biologists, and breeders. Rice (Oryza sativa) cultivar Azucena—belonging to the Japonica subspecies—exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci—qSLB1.1—for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes—SLB1 and SLB2—with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2′-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.


Nature Communications | 2012

Degradation of monoCuLm 1 by APC/C TAD1 regulates rice tillering

Cao Xu; Yonghong Wang; Yanchun Yu; Jingbo Duan; Zhigang Liao; Guosheng Xiong; Xiangbing Meng; Guifu Liu; Qian Qian; Jiayang Li

A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture.


Nature plants | 2016

Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

Jun Li; Xiangbing Meng; Yuan Zong; Kunling Chen; Huawei Zhang; Jinxing Liu; Jiayang Li; Caixia Gao

Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants1, but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis

Dajun Sang; Dongqin Chen; Guifu Liu; Yan Liang; Linzhou Huang; Xiangbing Meng; Jinfang Chu; Xiaohong Sun; Guojun Dong; Yundong Yuan; Qian Qian; Jiayang Li; Yonghong Wang

Significance Shoot gravitropism is a key determinant of tiller angle, one of the most important factors that affect ideal plant architecture and grain yield of cereal crops. Strigolactones (SLs) are newly identified plant hormones that play diverse roles in plant growth and development. In this study, we provide compelling evidences that SLs are involved in shoot gravitropism, showing that SLs attenuate shoot gravitropism by inhibiting auxin biosynthesis. Our study uncovers a new role of SLs and suggests a previously unidentified mechanism underlying shoot gravitropism and tiller angle. Based on our study, SLs could be considered an important tool for achieving ideal plant architecture in the future. Tiller angle, a key agronomic trait for achieving ideal plant architecture and increasing grain yield, is regulated mainly by shoot gravitropism. Strigolactones (SLs) are a group of newly identified plant hormones that are essential for shoot branching/rice tillering and have further biological functions as yet undetermined. Through screening for suppressors of lazy1 (sols), a classic rice mutant exhibiting large tiller angle and defective shoot gravitropism, we identified multiple SOLS that are involved in the SL biosynthetic or signaling pathway. We show that SL biosynthetic or signaling mutants can rescue the spreading phenotype of lazy1 (la1) and that SLs can inhibit auxin biosynthesis and attenuate rice shoot gravitropism, mainly by decreasing the local indoleacetic acid content. Although both SLs and LA1 are negative regulators of polar auxin transport, SLs do not alter the lateral auxin transport of shoot base, unlike LA1, which is a positive regulator of lateral auxin transport in rice. Genetic evidence demonstrates that SLs and LA1 participate in regulating shoot gravitropism and tiller angle in distinct genetic pathways. In addition, the SL-mediated shoot gravitropism is conserved in Arabidopsis. Our results disclose a new role of SLs and shed light on a previously unidentified mechanism underlying shoot gravitropism. Our study indicates that SLs could be considered as an important tool to achieve ideal plant architecture in the future.

Collaboration


Dive into the Xiangbing Meng's collaboration.

Top Co-Authors

Avatar

Jiayang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yonghong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guifu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guosheng Xiong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanhui Jing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zefu Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge