Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gurudutt Pendyala is active.

Publication


Featured researches published by Gurudutt Pendyala.


Brain Behavior and Immunity | 2015

Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders

Pierluca Coiro; Ragunathan Padmashri; Anand Suresh; Elizabeth Spartz; Gurudutt Pendyala; Shinnyi Chou; Yoosun Jung; Brittney M. Meays; Shreya Roy; Nagsen Gautam; Yazen Alnouti; Ming Li; Anna Dunaevsky

Both genetic and environmental factors are thought to contribute to neurodevelopmental and neuropsychiatric disorders with maternal immune activation (MIA) being a risk factor for both autism spectrum disorders and schizophrenia. Although MIA mouse offspring exhibit behavioral impairments, the synaptic alterations in vivo that mediate these behaviors are not known. Here we employed in vivo multiphoton imaging to determine that in the cortex of young MIA offspring there is a reduction in number and turnover rates of dendritic spines, sites of majority of excitatory synaptic inputs. Significantly, spine impairments persisted into adulthood and correlated with increased repetitive behavior, an ASD relevant behavioral phenotype. Structural analysis of synaptic inputs revealed a reorganization of presynaptic inputs with a larger proportion of spines being contacted by both excitatory and inhibitory presynaptic terminals. These structural impairments were accompanied by altered excitatory and inhibitory synaptic transmission. Finally, we report that a postnatal treatment of MIA offspring with the anti-inflammatory drug ibudilast, prevented both synaptic and behavioral impairments. Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment.


Drug and Alcohol Dependence | 2015

Ibudilast reverses the decrease in the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1) produced by chronic methamphetamine intake in rats

Sergios Charntikov; Steven T. Pittenger; Ishwor Thapa; Dhundy Bastola; Rick A. Bevins; Gurudutt Pendyala

BACKGROUND Chronic methamphetamine intake has been shown to induce a neuroinflammatory state leading to significant changes in brain functioning including behavioral changes. These changes can persist for years after drug use is discontinued and likely contribute to the risk of relapse. A better understanding of inflammation responses associated with methamphetamine intake may help in designing novel and more efficacious treatment strategies. METHODS Rats were trained to self-administer methamphetamine or saline on a variable ratio 3 schedule of reinforcement (25 days). This training was followed by 12 days of extinction (i.e., methamphetamine unavailable) during which rats received daily post-session administration of ibudilast (AV411; 2.5 or 7.5mg/kg) or saline. Following extinction, synaptosomes were isolated from the prefrontal cortex (PFC) and the differential pattern of synaptic proteins was assessed using mass spectrometry based proteomics. RESULTS Treatment with ibudilast allowed for deeper extinction of active lever pressing. Quantitative mass spectrometry based proteomics on the PFC identified one potential hit; the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1). While methamphetamine intake was associated with reduced PEBP1 protein levels, treatment with ibudilast reversed this effect. Furthermore, decreased PEBP1 expression was correlated with subsequent activation of Raf-1, MEK, and ERK signaling components of the mitogen-activated protein kinase cascade (MAPK). Raf-1, MEK, and ERK expression levels were also attenuated by ibudilast treatment. CONCLUSION PEBP1, given its synaptic localization and its role as a signaling molecule acting via the ERK/MAPK pathway, could be a potential therapeutic target mediating drug-seeking behaviors associated with neuroinflammation.


PLOS ONE | 2012

Protective role for the disulfide isomerase PDIA3 in methamphetamine neurotoxicity.

Gurudutt Pendyala; Carly Ninemire; Howard S. Fox

Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3) to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations.


Genome Medicine | 2010

Proteomic and metabolomic strategies to investigate HIV-associated neurocognitive disorders

Gurudutt Pendyala; Howard S. Fox

Diagnosing neurodegenerative diseases, monitoring their progression and assessing responses to treatments will all be aided by the identification of molecular markers of different stages of pathology. Protein biomarkers for HIV-associated neurocognitive disorders that have been discovered using proteomics include complement C3, soluble superoxide dismutase and a prostaglandin synthase. Metabolomics has not yet been widely used for biomarker discovery, but early work shows that it has great potential.


PLOS ONE | 2012

Methamphetamine and Inflammatory Cytokines Increase Neuronal Na+/K+-ATPase Isoform 3: Relevance for HIV Associated Neurocognitive Disorders

Gurudutt Pendyala; James L. Buescher; Howard S. Fox

Methamphetamine (METH) abuse in conjunction with human immunodeficiency virus (HIV) exacerbates neuropathogenesis and accelerates neurocognitive impairments in the central nervous system (CNS), collectively termed HIV Associated Neurocognitive Disorders (HAND). Since both HIV and METH have been implicated in altering the synaptic architecture, this study focused on investigating alterations in synaptic proteins. Employing a quantitative proteomics approach on synaptosomes isolated from the caudate nucleus from two groups of rhesus monkeys chronically infected with simian immunodeficiency virus (SIV) differing by one regimen, METH treatment, we identified the neuron specific Na+/K+-ATPase alpha 1 isoform 3 (ATP1A3) to be up regulated after METH treatment, and validated its up regulation by METH in vitro. Further studies on signaling mechanisms revealed that the activation of ATP1A3 involves the extracellular regulated kinase (ERK) pathway. Given its function in maintaining ionic gradients and emerging role as a signaling molecule, changes in ATP1A3 yields insights into the mechanisms associated with HAND and interactions with drugs of abuse.


Neuropsychopharmacology | 2017

Maternal Immune Activation Causes Behavioral Impairments and Altered Cerebellar Cytokine and Synaptic Protein Expression

Gurudutt Pendyala; Shinnyi Chou; Yoosun Jung; Pierluca Coiro; Elizabeth Spartz; Ragunathan Padmashri; Ming Li; Anna Dunaevsky

Emerging epidemiology studies indicate that maternal immune activation (MIA) resulting from inflammatory stimuli such as viral or bacterial infections during pregnancy serves as a risk factor for multiple neurodevelopmental disorders including autism spectrum disorders and schizophrenia. Although alterations in the cortex and hippocampus of MIA offspring have been described, less evidence exists on the impact on the cerebellum. Here, we report altered expression of cytokines and chemokines in the cerebellum of MIA offspring, including increase in the neuroinflammatory cytokine TNFα and its receptor TNFR1. We also report reduced expression of the synaptic organizing proteins cerebellin-1 and GluRδ2. These synaptic protein alterations are associated with a deficit in the ability of cerebellar neurons to form synapses and an increased number of dendritic spines that are not in contact with a presynaptic terminal. These impairments are likely contributing to the behavioral deficits in the MIA exposed offspring.


Journal of Neuroimmune Pharmacology | 2017

Tat-Mediated Induction of miRs-34a & -138 Promotes Astrocytic Activation via Downregulation of SIRT1: Implications for Aging in HAND

Guoku Hu; Ke Liao; Lu Yang; Gurudutt Pendyala; Yeonhee Kook; Howard S. Fox; Shilpa Buch

Astrocyte activation is a hallmark of HIV infection and aging in the CNS. In chronically infected HIV patients, prolonged activation of astrocytes has been linked to accelerated aging including but not limited to neurocognitive impairment and frailty. The current study addresses the role of HIV protein Tat in inducing a set of small noncoding microRNAs (miRNA) that play critical role in astrogliosis. In our efforts to link astrocyte activation as an indicator of aging, we assessed the brains of both wild type and HIV transgenic rats for the expression of glial fibrillary acidic protein (GFAP). As expected, in the WT animals we observed age-dependent increase in astrogliosis in the older animals compared to the younger group. Interestingly, compared to the young WT group, young HIV Tg rats exhibited higher levels of GFAP in this trend was also observed in the older HIV Tg rats compared to the older WT group. Based on the role of SIRT1 in aging and the regulation of SIRT1 by miRNAs-34a and −138, we next assessed the expression levels of these miRs in the brains of both the young an old WT and HIV Tg rats. While there were no significant differences in the young WT versus the HIV Tg rats, in the older HIV Tg rats there was a significant upregulation in the expression of miRs-34a & -138 in the brains. Furthermore, increased expression of miRs-34a & -138 in the older Tg rats, correlated with a concomitant decrease in their common anti-aging target protein SIRT1, in the brains of these animals. To delineate the mechanism of action we assessed the role of HIV-Tat (present in the Tg rats) in inducing miRs-34a & -138 in both the primary astrocytes and the astrocytoma cell line A172, thereby leading to posttranscriptional suppression of SIRT1 with a concomitant up regulation of NF-kB driven expression of GFAP.


Autophagy | 2018

HIV-1 TAT-mediated microglial activation: Role of mitochondrial dysfunction and defective mitophagy

Annadurai Thangaraj; Palsamy Periyasamy; Ke Liao; Venkata Sunil Bendi; Shannon Callen; Gurudutt Pendyala; Shilpa Buch

ABSTRACT While the advent of combination antiretroviral therapy (cART) has dramatically increased the life expectancy of HIV-1 infected individuals, paradoxically, however, the prevalence of HIV-1-associated neurocognitive disorders is on the rise. Based on the premise that the cytotoxic HIV-1 protein, transactivator of transcription (TAT), a known activator of glial cells that is found to persist in the central nervous system (CNS) despite cART, we sought to explore the role of defective mitophagy in HIV-1 TAT-mediated microglial activation. Our results demonstrated that exposure of mouse primary microglia to HIV-1 TAT resulted in cellular activation involving altered mitochondrial membrane potential that was accompanied by accumulation of damaged mitochondria. Exposure of microglia to HIV-1 TAT resulted in increased expression of mitophagy signaling proteins, such as PINK1, PRKN, and DNM1L, with a concomitant increase in the formation of autophagosomes, as evidenced by increased expression of BECN1 and MAP1LC3B-II. Intriguingly, exposure of cells to HIV-1 TAT also resulted in increased expression of SQSTM1, signifying thereby a possible blockade of the mitophagy flux, leading, in turn, to the accumulation of mitophagosomes. Interestingly, HIV-1 TAT-mediated activation of microglia was associated with decreased rate of extracellular acidification and mitochondrial oxygen consumption and increased expression of proinflammatory cytokines, such as Tnf, Il1b, and Il6. HIV-1 TAT-mediated defective mitophagy leading to microglial activation was further validated in vivo in the brains of HIV-1 transgenic rats. In conclusion, HIV-1 TAT activates microglia by increasing mitochondrial damage via defective mitophagy. Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; cART: combined antiretroviral therapy; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-diamidino-2-phenylindole‎; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAND: HIV-1-associated neurocognitive disorders; HIV-1 TAT: human immunodeficiency virus-1 transactivator of transcription; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; mt-CO1: mitochondrially encoded cytochrome c oxidase; mt-ND6: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6; NFKB1: nuclear factor kappa B subunit 1; NLRP3: NLR family pyrin domain containing 3; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor


Journal of NeuroVirology | 2015

Chronic SIV and morphine treatment increases heat shock protein 5 expression at the synapse

Gurudutt Pendyala; Palsamy Periyasamy; Shannon Callen; Howard S. Fox; Steven J. Lisco; Shilpa Buch

The abuse of opiates such as morphine in synergy with HIV infection accelerates neurocognitive impairments and neuropathology in the CNS of HIV-infected subjects, collectively referred to as HAND. To identify potential pathogenic markers associated with HIV and morphine in perturbing the synaptic architecture, we performed quantitative mass spectrometry proteomics on purified synaptosomes isolated from the caudate of two groups of rhesus macaques chronically infected with SIV differing by one regimen—morphine treatment. The upregulation of heat shock 70-kDa protein 5 in the SIV + morphine group points to increased cellular stress during SIV/morphine interaction thus leading to CNS dysfunction.


Archive | 2014

Isolation of Synaptosomes from Archived Brain Tissues

Gurudutt Pendyala; James L. Buescher; Howard S. Fox

Synapses in the central nervous system serve as communication points between neurons and are critical regulators of neurotransmission and synaptic plasticity, the latter refers to a process of experience dependent changes in synaptic connectivity, where neurons undergo extensive sculpting and rewiring. Research on understanding the changes at the level of the synapse holds great promise into understanding the biological basis of many neurodegenerative and neuropsychiatric disorders in which brain wiring goes awry. One such approach to understand the changes occurring at the synapse is by isolating synaptosomes. Here, we describe the isolation of synaptosomes from archived human brain tissue using subcellular fractionation, which when combined to high-throughput “omics”-based approaches could yield vital clues into understanding the underlying bases of neurodegeneration.

Collaboration


Dive into the Gurudutt Pendyala's collaboration.

Top Co-Authors

Avatar

Howard S. Fox

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shilpa Buch

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shannon Callen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Spartz

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

James L. Buescher

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ke Liao

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Li

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Palsamy Periyasamy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pierluca Coiro

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge