Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gurusamy Saravanakumar is active.

Publication


Featured researches published by Gurusamy Saravanakumar.


Advanced Drug Delivery Reviews | 2010

Targeted delivery of low molecular drugs using chitosan and its derivatives

Jae Hyung Park; Gurusamy Saravanakumar; Kwangmeyung Kim; Ick Chan Kwon

Chitosan has prompted the continuous impetus for the development of safe and effective drug delivery systems because of its unique physicochemical and biological characteristics. The primary hydroxyl and amine groups located on the backbone of chitosan allow for chemical modification to control its physical properties. When the hydrophobic moiety is conjugated to a chitosan molecule, the resulting amphiphile may form self-assembled nanoparticles that can encapsulate a quantity of drugs and deliver them to a specific site of action. Chemical attachment of the drug to the chitosan throughout the functional linker may produce useful prodrugs, exhibiting the appropriate biological activity at the target site. Mucoadhesive and absorption enhancement properties of chitosan increase the in vivo residence time of the dosage form in the gastrointestinal tract and improve the bioavailability of various drugs. The main objective of this review is to provide an insight into various target-specific carriers, based on chitosan and its derivatives, towards low molecular weight drug delivery. The first part of the review is concerned with the organ-specific delivery of low molecular drugs using chitosan and its derivatives. The subsequent section considers the recent developments of drug delivery carriers for cancer therapy with special focus on various targeting strategies.


Colloids and Surfaces B: Biointerfaces | 2012

Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer

Ki Young Choi; Gurusamy Saravanakumar; Jae Hyung Park; Kinam Park

The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics.


International Journal of Pharmaceutics | 2010

Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel.

Gurusamy Saravanakumar; Ki Young Choi; Hong Yeol Yoon; Kwangmeyung Kim; Jae Hyung Park; Ick Chan Kwon; Kinam Park

Amphiphilic hyaluronic acid conjugates were synthesized as a potential drug carrier by chemical conjugation of an amine-terminated hydrotropic oligomer, which has a unique ability to enhance the solubility of paclitaxel (PTX), to a hyaluronic acid (HA) backbone using carbodiimide chemistry. The physicochemical properties of the hydrotropic hyaluronic acid (HydroHA) conjugates were investigated using (1)H NMR, dynamic light scattering, transmission electron microscopy (TEM), and fluorescence spectroscopy. HydroHA conjugates could form self-assembled nanoparticles in an aqueous medium because of hydrophobic interactions among hydrotropic oligomers. Their particle sizes were in the range of 274-356nm, depending on the degree of substitution (DS) of the hydrotropic oligomer. TEM images showed that particle morphology was spherical in shape. Critical aggregation concentrations of HydroHA conjugates ranged from 0.034 to 0.125mg/mL, which decreased with an increase in the DS of the hydrotropic oligomer. The HydroHA conjugates were selectively taken up by the cancer cell line (SCC-7) over-expressing CD44, a hyaluronic receptor. The nanoparticles could encapsulate PTX up to 20.7wt.% by the dialysis method. The in vitro release pattern of PTX from nanoparticles was significantly dependent on drug loading content, in which the release rate was lower for the nanoparticles that contained larger amounts of the drug. From the cytotoxicity test, it was found that the drug-loaded HydroHA nanoparticles exhibited stronger cytotoxicity to SCC-7 than to normal fibroblast cell (CV-1). These results suggest that HydroHA nanoparticles have potential as the carrier of PTX for cancer therapy.


Journal of Controlled Release | 2009

Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution.

Gurusamy Saravanakumar; Kyung Hyun Min; Dong Sik Min; Ah Young Kim; Chang Moon Lee; Yong Woo Cho; Sang Cheon Lee; Kwangmeyung Kim; Seo Young Jeong; Kinam Park; Jae Hyung Park; Ick Chan Kwon

Development of successful formulations for poorly water-soluble drugs remains a longstanding critical and challenging issue in cancer therapy. As a potential drug carrier of paclitaxel, hydrotropic oligomer-glycol chitosan (HO-GC) was synthesized by chemical conjugation of the N,N-diethylnicotinamide-based oligomer, uniquely designed for enhancing the aqueous solubility of paclitaxel, to the backbone of glycol chitosan. Owing to its amphiphilicity, the conjugate formed self-assembled nanoparticles with a mean diameter of 313+/-13nm in a phosphate-buffered saline (PBS, pH 7.4 at 37 degrees C). HO-GC nanoparticles maintained their structure for up to 50days in PBS. They could encapsulate a high quantity (20wt.%) of paclitaxel (PTX) with a maximum drug-loading efficiency of 97%, due to the presence of hydrotropic inner cores. When HO-GC-PTX particles were exposed to the 0.1M sodium salicylate solution in PBS (pH 7.4), PTX was released from nanoparticles in a sustained manner. From the cytotoxicity test, it was confirmed that HO-GC-PTX nanoparticles showed lower cytotoxicity than free PTX formulation in 50%/50% Cremophor EL/ethanol mixture. The optical imaging results indicated that near-infrared fluorescence dye (Cy5.5)-labeled HO-GC-PTX showed an excellent tumor specificity in SCC7 tumor-bearing mice, due to the enhanced permeation and retention effect. Overall, HO-GC-PTX nanoparticles might be a promising carrier for PTX delivery in cancer therapy.


Journal of Controlled Release | 2013

Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect on tumor targetability in vivo

Hwa Seung Han; Jungmin Lee; Hyun Ryoung Kim; Su Young Chae; Minwoo Kim; Gurusamy Saravanakumar; Hong Yeol Yoon; Dong Gil You; Hyewon Ko; Kwangmeyung Kim; Ick Chan Kwon; Jae Chan Park; Jae Hyung Park

The in vivo stability and tumor targetability of self-assembled polymeric nanoparticles are crucial for effective drug delivery. In this study, to develop biostable nanoparticles with high tumor targetability, poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (PEG-HANPs) were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method. The resulting nanoparticles (M-PEG-HANPs) had a smaller size (153.7±4.5nm) than bare PEG-HANPs (265.1±9.5nm), implying that mineralization allows the formation of compact nanoparticles. Interestingly, when the mineralized nanoparticles were exposed to acidic buffer conditions (<pH6.5), their sizes increased rapidly due to dissolution of the inorganic minerals. Doxorubicin (DOX), chosen as the model anticancer drug, was effectively encapsulated into the bare and mineralized nanoparticles. For bare PEG-HANPs, DOX was released in a sustained manner and its release rate was not dependent on the pH of the solution. On the other hand, DOX release from M-PEG-HANPs was pH-dependent: i.e. DOX was slowly released from nanoparticles under physiological condition (pH7.4), whereas its release rates were much higher at mildly acidic environments (<pH6.5). From in vivo biodistribution study, it was found that M-PEG-HANPs could reach the tumor site more effectively than bare PEG-HANPs. The antitumor efficacy of DOX-loaded nanoparticles was evaluated after systemic administration into the tumor-bearing mice. Of the samples tested, the most effective antitumor efficacy was observed for DOX-loaded M-PEG-HANPs. Overall, these results suggest that M-PEG-HANPs could be a promising carrier for an anticancer drug.


Journal of Controlled Release | 2015

Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy.

Hwa Seung Han; Ki Young Choi; Hyewon Ko; Jueun Jeon; Gurusamy Saravanakumar; Yung Doug Suh; Doo Sung Lee; Jae Hyung Park

For drug delivery nanocarriers to be a safe and effective therapeutic option, blood stability, tumor-targetability, and intracellular drug release features should be considered. In this study, to develop a potent drug delivery carrier that can meet the multiple requirements, we engineered a bioreducible core-crosslinked polymeric micelle based on hyaluronic acid (CC-HAM) by a facile method using d,l-dithiothreitol in aqueous conditions. The CC-HAM exhibited enhanced structural stability under diluted conditions with PBS containing FBS or sodium dodecyl sulfates. We also successfully encapsulated doxorubicin (DOX), chosen as a hydrophobic anti-cancer drug, in CC-HAMs with high loading efficiency (>80%). The drug release rate of CC-HAMs was rapidly accelerated in the presence of glutathione, whereas the drug release was significantly retarded in physiological buffer (pH7.4). An in vivo biodistribution study demonstrated the superior tumor targetability of CC-HAMs to that of non-crosslinked HAMs, primarily ascribed to robust stability of CC-HAMs in the bloodstream. Notably, these results correspond with the improved pharmacokinetics and tumor accumulation of DOX-loaded CC-HAMs as well as their excellent therapeutic efficacy. Overall, these results suggest that the robust, bioreducible CC-HAM can be applied as a potent doxorubicin delivery carrier for targeted cancer therapy.


Carbohydrate Polymers | 2014

Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging

Dong Gil You; Gurusamy Saravanakumar; Soyoung Son; Hwa Seung Han; Roun Heo; Kwangmeyung Kim; Ick Chan Kwon; Jun Young Lee; Jae Hyung Park

The hallmark of atherosclerosis in its early pathogenic process is the overexpression of class A scavenger receptors (SR-A) by activated macrophages. In this study, dextran sulfate-coated superparamagnetic iron oxide nanoparticles (DS-SPIONs), as a magnetic resonance (MR) imaging contrast agent of atherosclerosis, was prepared via the facile co-precipitation method using a versatile double-hydrophilic block copolymer comprising of a DS segment (ligand for SR-A) and a poly(glyclerol methacrylate) segment (SPIONs surface-anchoring unit). The physicochemical properties of the DS-SPIONs were investigated using various instruments. DS-SPIONs exhibited high aqueous stability compared to dextran-coated SPIONs (Dex-SPIONs), which were used as controls. The cellular uptake behaviors of DS-SPIONs and Dex-SPIONs were evaluated using Prussian blue assay. Interestingly, the DS-SPIONs were effectively taken up by activated macrophages compared to Dex-SPIONs. However, the cellular uptake of DS-SPIONs by activated macrophages was remarkably reduced in the presence of free DS. These results suggest that activated macrophages internalize DS-SPIONs via receptor (SR-A)-mediated endocytosis. T2-weighted MR imaging of the cells demonstrated that activated macrophages treated with DS-SPIONs showed a significantly lower signal intensity compared to those treated with Dex-SPIONs. Overall, these results suggest that DS-SPIONs may be utilized as a potential contrast agent for atherosclerosis MR imaging.


Journal of Controlled Release | 2013

Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting

Hong Yeol Yoon; Hyun Ryoung Kim; Gurusamy Saravanakumar; Roun Heo; Su Young Chae; Wooram Um; Kwangmeyung Kim; Ick Chan Kwon; Jun Young Lee; Doo Sung Lee; Jae Chan Park; Jae Hyung Park

The successful clinical translation of siRNA-based therapeutics requires efficient carrier systems that can specifically deliver siRNA within the cytosol of the target cells. Although numerous polymeric nanocarriers forming ionic complexes with siRNA have been investigated for cancer therapy, their poor stability and lack of tumor targetability have impeded their in vivo applications. To surmount these limitations, we synthesized a novel type of biodegradable hyaluronic acid-graft-poly(dimethylaminoethyl methacrylate) (HPD) conjugate that can form complexes with siRNA and be chemically crosslinked via the formation of the disulfide bonds under facile conditions. The crosslinked siRNA-HPD (C-siRNA-HPD) complexes exhibited high stability in a 50% serum solution, as compared to the uncrosslinked siRNA-HPD (U-siRNA-HPD) complexes and free siRNA. Both the C-siRNA-HPD and U-siRNA-HPD complexes were efficiently taken up by the CD44-overexpressing melanoma cells (B16F10), but not by the normal fibroblast cells (NIH3T3). When the RFP-expressing B16F10 cells were treated with the complexes or free siRNA, the C-siRNA-HPD complexes showed the highest decrease in RFP expression. In vivo studies demonstrated the selective accumulation of C-siRNA-HPD complexes at the tumor site after their systemic administration into tumor-bearing mice, resulting in an efficient gene silencing effect. Overall, these results suggest that the HPD conjugate could be used as an efficient carrier for the tumor-targeted delivery of siRNA.


Macromolecular Research | 2013

Synthesis and physicochemical characterization of reduction-sensitive block copolymer for intracellular delivery of doxorubicin

Thavasyappan Thambi; Gurusamy Saravanakumar; Jun-Uk Chu; Roun Heo; Hyewon Ko; V. G. Deepagan; Jong-Ho Kim; Jae Hyung Park

AbstractAn amphiphilic diblock copolymer bearing the reduction-sensitive linker, composed of poly(ethylene glycol) (PEG) and hydrophobic poly(γ-benzyl L-glutamate) (PBLG), was prepared as the potential carrier of doxorubicin (DOX) via a facile synthetic method in the presence of a shell-sheddable PEG macroinitiator (PEG-SS-NH2). Owing to its amphiphilic nature, the copolymer (PEG-SS-PBLG) formed spherical micelles (137 nm in diameter) in aqueous conditions. The micelles were stable under the physiologic condition (pH 7.4) and were readily cleaved in the presence of glutathione (GSH), a tripeptide reducing the disulfide bond in the cytoplasm of the cell. DOX, chosen as a model anticancer drug, was effectively encapsulated into the hydrophobic core of the micelle with high loading efficiency (>75%). The micelle released DOX completely within 18 h at 10 mM GSH mimicking the intracellular condition, whereas only 34% of the drug was released from the micelle at 2 μM GSH. In vitro cytotoxicity tests revealed that DOX-loaded reduction-sensitive micelles are more toxic to SCC7 cells than reduction-insensitive control micelles. These results suggest that PEG-SS-PBLG is the promising carrier for the intracellular delivery of DOX.


Journal of Controlled Release | 2012

Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy

Hong Yeol Yoon; Gurusamy Saravanakumar; Roun Heo; Seung Hong Choi; In Chan Song; Moon Hee Han; Kwangmeyung Kim; Jae Hyung Park; Kuiwon Choi; Ick Chan Kwon; Kinam Park

Polymeric nanoparticles, capable of encapsulating imaging agents and therapeutic drugs, have significant advantages for simultaneous diagnosis and therapy. Nonetheless, improvements in the loading contents of the active agents are needed to achieve enhanced imaging and effective therapeutic outcomes. Aiming to make these improvements, a hydrotropic micelle (HM) was explored to encapsulate superparamagnetic iron oxide nanoparticles (SPIONs) as the magnetic resonance (MR) imaging agent and paclitaxel (PTX) as the hydrophobic anticancer drug. Owing to its hydrotropic inner core with hydrophobic nature, HM could effectively encapsulate both of PTX and SPION via the simple dialysis method. The hydrodynamic size of HM increased from 68 to 178nm after physical encapsulation of SPION and PTX. Transmission electron microscopy analysis of HM bearing SPION and PTX (HM-SPION-PTX) revealed a spherical morphology with SPION clusters in the micelle cores. The micelles released PTX in a sustained manner. The bare HM and HM-SPION showed no toxicity to SCC7 cells, whereas HM-PTX and HM-SPION-PTX showed dose-dependent cytotoxicity that was lower than free PTX. HM-SPION-PTX exhibited 8.1-fold higher T(2) relaxivity than HM-SPION, implying potential of HM-SPION-PTX as the contrast agent for MR imaging. When systemically administered to tumor-bearing mice, HM-SPION-PTX was effectively accumulated at the tumor site, allowing its detection using MR imaging and effective therapy. Overall, these results suggested that HM-SPION-PTX is a promising candidate for combined diagnosis and treatment of cancer.

Collaboration


Dive into the Gurusamy Saravanakumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ick Chan Kwon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kwangmeyung Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hong Yeol Yoon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyewon Ko

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Roun Heo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Dong Gil You

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki Young Choi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge