Gustavo Guerrero
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustavo Guerrero.
Astronomy and Astrophysics | 2011
Petri J. Käpylä; Maarit J. Mantere; Gustavo Guerrero; Axel Brandenburg; Piyali Chatterjee
Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims. Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong banana cells. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.
The Astrophysical Journal | 2013
Gustavo Guerrero; Piotr K. Smolarkiewicz; A. G. Kosovichev; Nagi N. Mansour
To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such banana-cell pattern can be hidden beneath the supergranulation layer.
Monthly Notices of the Royal Astronomical Society | 2013
F. Del Sordo; Gustavo Guerrero; Axel Brandenburg
Many astrophysical bodies harbour magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by mean-field ...
Astronomy and Astrophysics | 2011
Piyali Chatterjee; Gustavo Guerrero; Axel Brandenburg
Context. Dynamos in the Sun and other bodies tend to produce magnetic fields that possess magnetic helicity of opposite sign at large and small scales, respectively. The build-up of magnetic helicity at small scales provides an important saturation mechanism. Aims. In order to understand the nature of the solar dynamo we need to understand the details of the saturation mechanism in spherical geometry. In particular, we aim to understand the effects of magnetic helicity fluxes from turbulence and meridional circulation. Methods. We consider a model with only radial shear confined to a thin layer (tachocline) at the bottom of the convection zone. The kinetic α owing to helical turbulence is assumed to be localized in a region above the convection zone. The dynamical quenching formalism is used to describe the build-up of mean magnetic helicity in the model, which results in a magnetic α effect that feeds back on the kinetic α effect. In some cases we compare these results with those obtained from a model with a simple algebraic α quenching formula. Results. In agreement with earlier findings, the magnetic α effect has the opposite sign compared with the kinetic α effect and leads to a catastrophic decrease of the saturation field strength proportional to the inverse magnetic Reynolds number. At high latitudes this quenching effect can lead to secondary dynamo waves that propagate poleward because of the opposite sign of α. These secondary dynamo waves are driven by small-scale magnetic helicity instead of the small-scale kinetic helicity. Magnetic helicity fluxes both from turbulent mixing and from meridional circulation alleviate catastrophic quenching. Interestingly, supercritical diffusive helicity fluxes also give rise to secondary dynamo waves and grand minima-like episodes.
Monthly Notices of the Royal Astronomical Society | 2010
Gustavo Guerrero; Piyali Chatterjee; Axel Brandenburg
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha effect. This gives a consistent description of the quenching mechanism in mean-field dynamo models. The main goal of this work is to explore the effects of this quenching mechanism in solar-like geometry, and in particular to investigate the role of magnetic helicity fluxes, specifically diffusive and Vishniac-Cho (VC) fluxes, at large magnetic Reynolds numbers (Rm). For models with negative radial shear or positive latitudinal shear, the magnetic alpha effect has predominantly negative (positive) sign in the northern (southern) hemisphere. In the absence of fluxes, we find that the magnetic energy follows an Rm^-1 dependence, as found in previous works. This catastrophic quenching is alleviated in models with diffusive magnetic helicity fluxes resulting in magnetic fields comparable to the equipartition value even for Rm=10^7. On the other hand, models with a shear-driven Vishniac-Cho flux show an increase of the amplitude of the magnetic field with respect to models without fluxes, but only for Rm<10^4. This is mainly a consequence of assuming a vacuum outside the Sun which cannot support a significant VC flux across the boundary. However, in contrast with the diffusive flux, the VC flux modifies the distribution of the magnetic field. In addition, if an ill-determined scaling factor in the expression for the VC flux is large enough, subcritical dynamo action is possible that is driven by the action of shear and the divergence of current helicity flux.
Monthly Notices of the Royal Astronomical Society | 2012
Gustavo Guerrero; Matthias Rheinhardt; Axel Brandenburg; Mausumi Dikpati
We simulate the magnetic feature-tracking (MFT) speed using axisymmetric advective–diffusive transport models in both one and two dimensions. By depositing magnetic bipolar regions at different latitudes at the Sun’s surface and following their evolution for a prescribed meridional circulation and magnetic diffusivity profiles, we derive the MFT speed as a function of latitude. We find that in a one-dimensional surface-transport model the simulated MFT speed at the surface is always the same as the meridional flow speed used as input to the model, but is different in a two-dimensional transport model in the meridional (r, θ) plane. The difference depends on the value of the magnetic diffusivity and on the radial gradient of the latitudinal velocity. We have confirmed our results with two different codes in spherical and Cartesian coordinates.
arXiv: Solar and Stellar Astrophysics | 2012
Gustavo Guerrero; Piotr K. Smolarkiewicz; Alexander G. Kosovichev; Nagi N. Mansour
Convective turbulent motions in the solar interior, as well as the mean flows resulting from them, determine the evolution of the solar magnetic field. With the aim to get a better understanding of these flows we study anelastic rotating convection in a spherical shell whose stratification resembles that of the solar interior. This study is done through numerical simulations performed with the EULAG code. Due to the numerical formulation, these simulations are known as implicit large eddy simulations (ILES), since they intrinsically capture the contribution of, non-resolved, small scales at the same time maximizing the effective Reynolds number. We reproduce some previous results and find a transition between buoyancy and rotation dominated regimes which results in anti-solar or solar like rotation patterns. Even thought the rotation profiles are dominated by Taylor-Proudman columnar rotation, we are able to reproduce the tachocline and a low latitude near-surface shear layer. We find that simulations results depend on the grid resolution as a consequence of a different sub-grid scale contribution.
Monthly Notices of the Royal Astronomical Society | 2010
Gustavo Guerrero; Piyali Chatterjee; Axel Brandenburg
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha effect. This gives a consistent description of the quenching mechanism in mean-field dynamo models. The main goal of this work is to explore the effects of this quenching mechanism in solar-like geometry, and in particular to investigate the role of magnetic helicity fluxes, specifically diffusive and Vishniac-Cho (VC) fluxes, at large magnetic Reynolds numbers (Rm). For models with negative radial shear or positive latitudinal shear, the magnetic alpha effect has predominantly negative (positive) sign in the northern (southern) hemisphere. In the absence of fluxes, we find that the magnetic energy follows an Rm^-1 dependence, as found in previous works. This catastrophic quenching is alleviated in models with diffusive magnetic helicity fluxes resulting in magnetic fields comparable to the equipartition value even for Rm=10^7. On the other hand, models with a shear-driven Vishniac-Cho flux show an increase of the amplitude of the magnetic field with respect to models without fluxes, but only for Rm<10^4. This is mainly a consequence of assuming a vacuum outside the Sun which cannot support a significant VC flux across the boundary. However, in contrast with the diffusive flux, the VC flux modifies the distribution of the magnetic field. In addition, if an ill-determined scaling factor in the expression for the VC flux is large enough, subcritical dynamo action is possible that is driven by the action of shear and the divergence of current helicity flux.
Geophysical and Astrophysical Fluid Dynamics | 2010
Piyali Chatterjee; Axel Brandenburg; Gustavo Guerrero
The small-scale magnetic helicity produced as a by-product of the large-scale dynamo is believed to play a major role in dynamo saturation. In a mean-field model the generation of small-scale magnetic helicity can be modelled by using the dynamical quenching formalism. Catastrophic quenching refers to a decrease of the saturation field strength with increasing Reynolds number. It has been suggested that catastrophic quenching only affects the region of non-zero helical turbulence (i.e. where the kinematic α operates) and that it is possible to alleviate catastrophic quenching by separating the region of strong shear from the α layer. We perform a systematic study of a simple axisymmetric two-layer αΩ dynamo in a spherical shell for Reynolds numbers in the range 1 ≤ R m ≤ 105. In the framework of dynamical quenching we show that this may not be the case, suggesting that magnetic helicity fluxes would be necessary.
arXiv: Solar and Stellar Astrophysics | 2011
Axel Brandenburg; Gustavo Guerrero
Some selected concepts of the solar activity cycle are reviewed. Cycle modulations through a stochastic α effect are being identified with limited scale separation ratios. Three-dimensional turbulence simulations with helicity and shear are compared at two different scale separation ratios. In both cases the level of fluctuations shows relatively little variation with the dynamo cycle. Prospects for a shallow origin of sunspots are discussed in terms of the negative effective magnetic pressure instability. Tilt angles of bipolar active regions are discussed as a consequence of shear rather than the Coriolis force.