Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustavo Mostoslavsky is active.

Publication


Featured researches published by Gustavo Mostoslavsky.


Cell | 2006

Genomic instability and aging-like phenotype in the absence of mammalian SIRT6

Raul Mostoslavsky; Katrin F. Chua; David B. Lombard; Wendy W. Pang; Miriam R. Fischer; Lionel Gellon; Pingfang Liu; Gustavo Mostoslavsky; Sonia Franco; Michael M. Murphy; Kevin D. Mills; Parin Patel; Joyce T. Hsu; Andrew L. Hong; Ethan Ford; Hwei Ling Cheng; Caitlin Kennedy; Nomeli P. Nunez; Roderick T. Bronson; David Frendewey; Wojtek Auerbach; David M. Valenzuela; Margaret Karow; Michael O. Hottiger; Stephen D. Hursting; J. Carl Barrett; Leonard Guarente; Richard C. Mulligan; Bruce Demple; George D. Yancopoulos

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Stem Cells | 2009

Induced Pluripotent Stem Cell Generation Using a Single Lentiviral Stem Cell Cassette

Cesar A. Sommer; Matthias Stadtfeld; George J. Murphy; Darrell N. Kotton; Gustavo Mostoslavsky

Induced pluripotent stem (iPS) cells can be generated using retroviral vectors expressing Oct4, Klf4, Sox2, and cMyc. Most prior studies have required multiple retroviral vectors for reprogramming, resulting in high numbers of genomic integrations in iPS cells and limiting their use for therapeutic applications. Here we describe the use of a single lentiviral vector expressing a “stem cell cassette” composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology, generating iPS cells from postnatal fibroblasts. iPS cells generated in this manner display embryonic stem cell‐like morphology, express stem cell markers, and exhibit in vivo pluripotency, as evidenced by their ability to differentiate in teratoma assays and their robust contribution to mouse chimeras. Combining all factors into a single transcript achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration. The use of a single lentiviral vector for reprogramming represents a powerful laboratory tool and a significant step toward the application of iPS technology for clinical purposes. STEM CELLS 2009;27:543–549


Nature | 2009

A mechanosensitive transcriptional mechanism that controls angiogenesis

Akiko Mammoto; Kip M. Connor; Chong W. Yung; Dongeun Huh; C. M. Aderman; Gustavo Mostoslavsky; Lois E. H. Smith; Donald E. Ingber

Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.


Nature Genetics | 2009

Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells

Sarah Eminli; Adlen Foudi; Matthias Stadtfeld; Nimet Maherali; Tim Ahfeldt; Gustavo Mostoslavsky; Hanno Hock

The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4, Sox2, Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however, direct evidence for this notion is lacking. Here, we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do, yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover, we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.


Stem Cells | 2010

Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette

Aba Somers; Jyh-Chang Jean; Cesar A. Sommer; Amel Omari; Christopher C. Ford; Jason A. Mills; Lei Ying; Andreia Gianotti Sommer; Jenny M. Jean; Brenden W. Smith; Robert Lafyatis; Marie-France Demierre; Daniel J. Weiss; Deborah L. French; Paul Gadue; George J. Murphy; Gustavo Mostoslavsky; Darrell N. Kotton

The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. Although several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed to achieve the widespread derivation of disease‐specific iPSC from humans with inherited or degenerative diseases. Here, we report the use of a humanized version of a single lentiviral “stem cell cassette” vector to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either three or four reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration that on removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease‐specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, α‐1 antitrypsin deficiency‐related emphysema, scleroderma, and sickle‐cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia. STEM CELLS 2010;28:1728–1740


Circulation | 2004

Cytokine-Induced Mobilization of Circulating Endothelial Progenitor Cells Enhances Repair of Injured Arteries

Deling Kong; Luis G. Melo; Massimiliano Gnecchi; Lunan Zhang; Gustavo Mostoslavsky; Chong C. Liew; Richard E. Pratt; Victor J. Dzau

Background—The existence of circulating endothelial progenitor cells (CEPCs) has previously been documented. These cells can be mobilized by cytokines and are recruited to sites of injury, where they may participate in tissue repair. In the present study, we examined the hypothesis that mobilization of CEPCs by exogenous granulocyte-colony stimulating factor (G-CSF) enhances repair of injured arteries by facilitating reendothelialization and inhibiting neointima development. Methods and Results—Male rats were injected daily with 50 &mgr;g/kg recombinant human G-CSF or 0.9% NaCl SC for 8 days. On the fifth day of treatment, 1 mL of blood was collected for fluorescence-activated cell sorting analysis of mononuclear cells, and the animals underwent balloon angioplasty of the common carotid artery. The animals were killed at 2 or 4 weeks after injury, and the carotid arteries were harvested and processed for immunohistochemistry, scanning electron microscopy (SEM), and morphometric analysis of endothelialization and neointimal formation. G-CSF increased the number of circulating mononuclear cells that express endothelial cell lineage markers several-fold. SEM and immunohistochemical staining with the endothelial marker, platelet and endothelial cell adhesion molecule-1, showed rapid and nearly complete (>90%) reendothelialization of the denuded vessels in the G-CSF–treated animals compared with <20% in the control animals. Reendothelialization was paralleled by a decrease in inflammation in the vessel wall. Neointima thickness was reduced by ≈60% in the G-CSF–treated animals compared with control animals at 2 and 4 weeks after injury. Conclusion—We postulate that cytokine-induced mobilization of CEPCs may be a suitable therapeutic strategy for prevention of restenosis after revascularization procedures.


Cell Stem Cell | 2010

Reprogramming of Human Peripheral Blood Cells to Induced Pluripotent Stem Cells

Judith Staerk; Meelad M. Dawlaty; Qing Gao; Dorothea Maetzel; Jacob Hanna; Cesar A. Sommer; Gustavo Mostoslavsky; Rudolf Jaenisch

Direct reprogramming of human fibroblasts to induced pluripotent stem cells (iPS) has been achieved by ectopic expression of defined transcription factors. Derivation of human fibroblasts however is a time consuming process and requires punch biopsies or isolation of patient foreskin. Here we use a polycistronic vector encoding Oct4, Klf4, Sox2 and c-Myc to generate iPS cells from from frozen peripheral blood of several donors. Genomic DNA analyses indicated that iPS cells were derived from mature T cells as well as myeloid donor cells. Inducing pluripotency in peripheral blood would allow utilization of easy to get samples from the adult and, more importantly, provide convenient access to numerous patient samples stored in blood banks. The latter is of major interest as frozen blood samples, when reprogrammed to iPS cells, would allow the retrospective molecular analyses of rare diseases.


Stem Cells | 2009

Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector.

Cesar A. Sommer; Andreia Gianotti Sommer; Tyler A. Longmire; Constantina Christodoulou; Dolly D. Thomas; Monica Gostissa; Frederick W. Alt; George J. Murphy; Darrell N. Kotton; Gustavo Mostoslavsky

The residual presence of integrated transgenes following the derivation of induced pluripotent stem (iPS) cells is highly undesirable. Here we demonstrate efficient derivation of iPS cells free of exogenous reprogramming transgenes using an excisable polycistronic lentiviral vector. A novel version of this vector containing a reporter fluorochrome allows direct visualization of vector excision in living iPS cells in real time. We find that removal of the reprogramming vector markedly improves the developmental potential of iPS cells and significantly augments their capacity to undergo directed differentiation in vitro. We further propose that methods to efficiently excise reprogramming transgenes with minimal culture passaging, such as those demonstrated here, are critical since we find that iPS cells may acquire chromosomal abnormalities, such as trisomy of chromosome 8, similar to embryonic stem cells after expansion in culture. Our findings illustrate an efficient method for the generation of transgene‐free iPS cells and emphasize the potential beneficial effects that may result from elimination of integrated reprogramming factors. In addition, our results underscore the consequences of long‐term culture that will need to be taken into account for the clinical application of iPS cells. STEM CELLS 2010;28:64–74


Nature | 2012

Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

Fabien G. Lafaille; Itai M. Pessach; Shen-Ying Zhang; Michael J. Ciancanelli; Melina Herman; Avinash Abhyankar; Shui-Wang Ying; Sotirios Keros; Peter A. Goldstein; Gustavo Mostoslavsky; Jose Ordovas-Montanes; Emmanuelle Jouanguy; Sabine Plancoulaine; Edmund Y. Tu; Yechiel Elkabetz; Saleh Al-Muhsen; Marc Tardieu; Thorsten M. Schlaeger; George Q. Daley; Laurent Abel; Jean-Laurent Casanova; Lorenz Studer; Luigi D. Notarangelo

In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of toll-like receptor 3 (TLR3) immunity are prone to HSV-1 encephalitis (HSE). We tested the hypothesis that the pathogenesis of HSE involves non-haematopoietic CNS-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of interferon-β (IFN-β) and/or IFN-λ1 in response to stimulation by the dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele showed that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was rescued further by treatment with exogenous IFN-α or IFN-β ( IFN-α/β) but not IFN-λ1. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3-pathway deficiencies.


Journal of Biological Chemistry | 2007

Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo.

Samir M. Parikh; Akiko Mammoto; Diana Gallagher; Barden Chan; Gustavo Mostoslavsky; Donald E. Ingber; Vikas P. Sukhatme

Angiopoietin-1 (Ang-1), a ligand of the endothelium-specific receptor Tie-2, inhibits permeability in the mature vasculature, but the mechanism remains unknown. Here we show that Ang-1 signals Rho family GTPases to organize the cytoskeleton into a junction-fortifying arrangement that enhances the permeability barrier function of the endothelium. Ang-1 phosphorylates Tie-2 and its downstream effector phosphatidylinositol 3-kinase. This induces activation of one endogenous GTPase, Rac1, and inhibition of another, RhoA. Loss of either part of this dual effect abrogates the cytoskeletal and anti-permeability actions of Ang-1, suggesting that coordinated GTPase regulation is necessary for the vessel-sealing effects of Ang-1. p190 RhoGAP, a GTPase regulatory protein, provides this coordinating function as it is phosphorylated by Ang-1 treatment, requires Rac1 activation, and is necessary for RhoA inhibition. Ang-1 prevents the cytoskeletal and pro-permeability effects of endotoxin but requires p190 RhoGAP to do so. Treatment with p190 RhoGAP small interfering RNA completely abolishes the ability of Ang-1 to rescue endotoxemia-induced pulmonary vascular leak and inflammation in mice. We conclude that Ang-1 prevents vascular permeability by regulating the endothelial cytoskeleton through coordinated and opposite effects on the Rho GTPases Rac1 and RhoA. By linking Rac1 activation and RhoA inhibition, p190 RhoGAP is critical to the protective effects of Ang-1 against endotoxin. These results provide mechanistic evidence that targeting the endothelium through Tie-2 may offer specific therapeutic strategies in life-threatening endotoxemic conditions such as sepsis and acute respiratory distress syndrome.

Collaboration


Dive into the Gustavo Mostoslavsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Gadue

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge