Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin H. Steinberg is active.

Publication


Featured researches published by Martin H. Steinberg.


The New England Journal of Medicine | 1994

Mortality In Sickle Cell Disease -- Life Expectancy and Risk Factors for Early Death

Orah S. Platt; Donald Brambilla; Wendell F. Rosse; Paul F. Milner; Oswaldo Castro; Martin H. Steinberg; Panpit P. Klug

BACKGROUND Information on life expectancy and risk factors for early death among patients with sickle cell disease (sickle cell anemia, sickle cell-hemoglobin C disease, and the sickle cell-beta-thalassemias) is needed to counsel patients, target therapy, and design clinical trials. METHODS We followed 3764 patients who ranged from birth to 66 years of age at enrollment to determine the life expectancy and calculate the median age at death. In addition, we investigated the circumstances of death for all 209 adult patients who died during the study, and used proportional-hazards regression analysis to identify risk factors for early death among 964 adults with sickle cell anemia who were followed for at least two years. RESULTS Among children and adults with sickle cell anemia (homozygous for sickle hemoglobin), the median age at death was 42 years for males and 48 years for females. Among those with sickle cell-hemoglobin C disease, the median age at death was 60 years for males and 68 years for females. Among adults with sickle cell disease, 18 percent of the deaths occurred in patients with overt organ failure, predominantly renal. Thirty-three percent were clinically free of organ failure but died during an acute sickle crisis (78 percent had pain, the chest syndrome, or both; 22 percent had stroke). Modeling revealed that in patients with sickle cell anemia, the acute chest syndrome, renal failure, seizures, a base-line white-cell count above 15,000 cells per cubic millimeter, and a low level of fetal hemoglobin were associated with an increased risk of early death. CONCLUSIONS Fifty percent of patients with sickle cell anemia survived beyond the fifth decade. A large proportion of those who died had no overt chronic organ failure but died during an acute episode of pain, chest syndrome, or stroke. Early mortality was highest among patients whose disease was symptomatic. A high level of fetal hemoglobin predicted improved survival and is probably a reliable childhood forecaster of adult life expectancy.


Nature | 2004

Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms

Maya Saleh; John P. Vaillancourt; Rona K. Graham; Matthew Huyck; Srinivasa M. Srinivasula; Emad S. Alnemri; Martin H. Steinberg; Vikki G. Nolan; Clinton T. Baldwin; Richard S. Hotchkiss; Timothy G. Buchman; Barbara A. Zehnbauer; Michael R. Hayden; Lindsay A. Farrer; Sophie Roy; Donald W. Nicholson

Caspases mediate essential key proteolytic events in inflammatory cascades and the apoptotic cell death pathway. Human caspases functionally segregate into two distinct subfamilies: those involved in cytokine maturation (caspase-1, -4 and -5) and those involved in cellular apoptosis (caspase-2, -3, -6, -7, -8, -9 and -10). Although caspase-12 is phylogenetically related to the cytokine maturation caspases, in mice it has been proposed as a mediator of apoptosis induced by endoplasmic reticulum stress including amyloid-β cytotoxicity, suggesting that it might contribute to the pathogenesis of Alzheimers disease. Here we show that a single nucleotide polymorphism in caspase-12 in humans results in the synthesis of either a truncated protein (Csp12-S) or a full-length caspase proenzyme (Csp12-L). The read-through single nucleotide polymorphism encoding Csp12-L is confined to populations of African descent and confers hypo-responsiveness to lipopolysaccharide-stimulated cytokine production in ex vivo whole blood, but has no significant effect on apoptotic sensitivity. In a preliminary study, we find that the frequency of the Csp12-L allele is increased in African American individuals with severe sepsis. Thus, Csp12-L attenuates the inflammatory and innate immune response to endotoxins and in doing so may constitute a risk factor for developing sepsis.


Journal of Clinical Investigation | 1982

Spontaneous oxygen radical generation by sickle erythrocytes.

Robert P. Hebbel; John W. Eaton; M. Balasingam; Martin H. Steinberg

Since the various membrane abnormalities of sickle erythrocytes might result from excessive accumulation of oxidant damage, we have measured the generation of superoxide, peroxide, and hydroxyl radical by normal and sickle erythrocytes using assays involving reduction of cytochrome c, aminotriazole inhibition of catalase, and methane evolution from dimethyl sulfoxide, respectively. Compared with normal erythrocytes, sickle erythrocytes spontaneously generate approximately twice as much superoxide, peroxide, and hydroxyl radical. One possible source of hydroxyl radical generation was identified as hemichrome, excessive amounts of which are bound to sickle erythrocyte membranes. Hemichrome did not generate hydroxyl radical when exposed to superoxide alone or peroxide alone. However, in the presence of both superoxide and peroxide, hemichrome greatly facilitated hydroxyl radical generation. Supporting this, normal erythrocyte membranes induced to acquire sickle hemichrome concomitantly acquired an enhanced ability to mediate hydroxyl radical generation. Finally, sickle erythrocyte membranes greatly enhanced superoxide/peroxide-driven hydroxyl radical generation as compared with normal erythrocyte membranes. These data suggest that an excessive accumulation of oxidant damage in sickle erythrocyte membranes might contribute to the accelerated membrane senescence of these cells. They further indicate that accumulation of oxidant damage could be a determinant of normal erythrocyte membrane senescence.


The New England Journal of Medicine | 1999

Management of Sickle Cell Disease

Martin H. Steinberg

One of every 600 black people in the United States has sickle cell anemia. In addition, sickle cell–hemoglobin C disease and sickle cell–β-thalassemia, which are other common genotypes of sickle ce...


Nature Genetics | 2005

Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia

Paola Sebastiani; Marco F. Ramoni; Vikki G. Nolan; Clinton T. Baldwin; Martin H. Steinberg

Sickle cell anemia (SCA) is a paradigmatic single gene disorder caused by homozygosity with respect to a unique mutation at the β-globin locus. SCA is phenotypically complex, with different clinical courses ranging from early childhood mortality to a virtually unrecognized condition. Overt stroke is a severe complication affecting 6–8% of individuals with SCA. Modifier genes might interact to determine the susceptibility to stroke, but such genes have not yet been identified. Using Bayesian networks, we analyzed 108 SNPs in 39 candidate genes in 1,398 individuals with SCA. We found that 31 SNPs in 12 genes interact with fetal hemoglobin to modulate the risk of stroke. This network of interactions includes three genes in the TGF-β pathway and SELP, which is associated with stroke in the general population. We validated this model in a different population by predicting the occurrence of stroke in 114 individuals with 98.2% accuracy.


PLOS ONE | 2012

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani; Nadia Solovieff; Andrew T. DeWan; Kyle M. Walsh; Annibale Alessandro Puca; Stephen W. Hartley; Efthymia Melista; Stacy L. Andersen; Daniel A. Dworkis; Jemma B. Wilk; Richard H. Myers; Martin H. Steinberg; Monty Montano; Clinton T. Baldwin; Josephine Hoh; Thomas T. Perls

Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.


Hematology | 2004

Sickle Cell Disease

Frédéric B. Piel; Martin H. Steinberg; David C. Rees

Sickle cell disease is an increasing global health problem. Estimates suggest that every year approximately 300,000 infants are born with sickle cell anemia, which is defined as homozygosity for the sickle hemoglobin (HbS) gene (i.e., for a missense mutation [Glu6Val, rs334] in the β-globin gene [HBB]) and that this number could rise to 400,000 by 2050.1 Although early diagnosis, penicillin prophylaxis, blood transfusion, transcranial Doppler imaging, hydroxyurea, and hematopoietic stem-cell transplantation can dramatically improve survival and quality of life for patients with sickle cell disease, our understanding of the role of genetic and nongenetic factors in explaining the remarkable phenotypic diversity of this mendelian disease is still limited. Better prediction of the severity of sickle cell disease could lead to more precise treatment and management. Beyond well-known modifiers of disease severity, such as fetal hemoglobin (HbF) levels and α-thalassemia, other genetic variants might affect specific subphenotypes. Similarly, although the influence of altitude and temperature has long been reflected in advice to patients with sickle cell disease, recent studies of nongenetic factors, including climate and air quality, suggest more complex associations between environmental factors and clinical complications.2 New treatments and management strategies accounting for these genetic and nongenetic factors could substantially and rapidly improve the quality of life and reduce health care costs for patients with sickle cell disease.


British Journal of Haematology | 2005

Predicting clinical severity in sickle cell anaemia

Martin H. Steinberg

The ability to predict the phenotype of an individual with sickle cell anaemia would allow a reliable prognosis and could guide therapeutic decision making. Some risk factors for individual disease complications are known but are insufficiently precise to use for prognostic purposes; predicting the global disease severity is not yet possible. Genetic association studies, which attempt to link gene polymorphisms with selected disease subphenotypes, may eventually provide useful methods of foretelling the likelihood of certain complications and allow better individualized treatment.


Blood | 2011

Fetal hemoglobin in sickle cell anemia

Idowu Akinsheye; Abdulrahman Alsultan; Nadia Solovieff; Duyen Ngo; Clinton T. Baldwin; Paola Sebastiani; David H.K. Chui; Martin H. Steinberg

Fetal hemoglobin (HbF) is the major genetic modulator of the hematologic and clinical features of sickle cell disease, an effect mediated by its exclusion from the sickle hemoglobin polymer. Fetal hemoglobin genes are genetically regulated, and the level of HbF and its distribution among sickle erythrocytes is highly variable. Some patients with sickle cell disease have exceptionally high levels of HbF that are associated with the Senegal and Saudi-Indian haplotype of the HBB-like gene cluster; some patients with different haplotypes can have similarly high HbF. In these patients, high HbF is associated with generally milder but not asymptomatic disease. Studying these persons might provide additional insights into HbF gene regulation. HbF appears to benefit some complications of disease more than others. This might be related to the premature destruction of erythrocytes that do not contain HbF, even though the total HbF concentration is high. Recent insights into HbF regulation have spurred new efforts to induce high HbF levels in sickle cell disease beyond those achievable with the current limited repertory of HbF inducers.


American Journal of Hematology | 2009

Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions†‡

Gregory J. Kato; Robert P. Hebbel; Martin H. Steinberg; Mark T. Gladwin

Sickle cell disease has been very well characterized as a single amino acid molecular disorder of hemoglobin leading to its pathological polymerization, with resulting red cell rigidity that causes poor microvascular blood flow, with consequent tissue ischemia and infarction. More recently, an independent spectrum of pathophysiology of blood vessel function has been demonstrated, involving abnormal vascular tone and activated, adhesive endothelium. These vasculopathic abnormalities are attributable to pathways involving hemolysis-associated defects in nitric oxide bioavailability, oxidative stress, ischemia-reperfusion injury, hemostatic activation, leukocytes and platelets. Vasculopathy of sickle cell disease has been implicated in the development of pulmonary hypertension, stroke, leg ulceration and priapism, particularly associated with hemolytic severity, and reported also in other severe hemolytic disorders. This vasculopathy might also play a role in other chronic organ dysfunction in patients with sickle cell disease. These pathways present novel targets for pharmacologic intervention, and several clinical trials are already under way. The authors present their perspectives of a workshop held at the National Institutes of Health in August 2008 on vasculopathy in sickle cell disease, along with meritorious future scientific questions on the topic of vascular complications of sickle cell disease.

Collaboration


Dive into the Martin H. Steinberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge